Automatic Parallelization
Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor ( SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time. The programming control structures on which autoparallelization places the most focus are loops, because, in general, most of the execution time of a program takes place inside some form of loop. There are two main approaches to parallelization of loops: pipelined multi-threading and cyclic multi-threading. For example, consider a loop that on each iteration applies a hundred operations, and runs for a thousand iterations. This can be thought of as a grid of 100 columns by 1000 rows, a total of 100,000 operations. Cyc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Source Code
In computing, source code, or simply code or source, is a plain text computer program written in a programming language. A programmer writes the human readable source code to control the behavior of a computer. Since a computer, at base, only understands machine code, source code must be Translator (computing), translated before a computer can Execution (computing), execute it. The translation process can be implemented three ways. Source code can be converted into machine code by a compiler or an assembler (computing), assembler. The resulting executable is machine code ready for the computer. Alternatively, source code can be executed without conversion via an interpreter (computing), interpreter. An interpreter loads the source code into memory. It simultaneously translates and executes each statement (computer science), statement. A method that combines compilation and interpretation is to first produce bytecode. Bytecode is an intermediate representation of source code tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Fabrics, B
Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics and physics * Vector (mathematics and physics) ** Row and column vectors, single row or column matrices ** Vector quantity ** Vector space ** Vector field, a vector for each point Molecular biology * Vector (molecular biology), a DNA molecule used as a vehicle to artificially carry foreign genetic material into another cell ** Cloning vector, a small piece of DNA into which a foreign DNA fragment can be inserted for cloning purposes ** Shuttle vector, a plasmid constructed so that it can propagate in two different host species ** Viral vector, a tool commonly used by molecular biologists to deliver genetic materials into cells Computer science * Vector, a one-dimensional array data structure ** Distance-vector routing protocol, a cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
OpenHMPP
OpenHMPP (HMPP for Hybrid Multicore Parallel Programming) - programming standard for heterogeneous computing. Based on a set of compiler directives, standard is a programming model designed to handle hardware accelerators without the complexity associated with GPU programming. This approach based on directives has been implemented because they enable a loose relationship between an application code and the use of a hardware accelerator (HWA). Introduction The OpenHMPP directive-based programming model offers a syntax to offload computations on hardware accelerators and to optimize data movement to/from the hardware memory. The model is based on works initialized by CAPS (Compiler and Architecture for Embedded and Superscalar Processors), a common project from INRIA, CNRS, the University of Rennes 1 and the INSA of Rennes. OpenHMPP concept OpenHMPP is based on the concept of codelets, functions that can be remotely executed on HWAs. The OpenHMPP codelet concept A codele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
OpenMP
OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, Windows and OpenHarmony. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior. OpenMP is managed by the nonprofit technology consortium ''OpenMP Architecture Review Board'' (or ''OpenMP ARB''), jointly defined by a broad swath of leading computer hardware and software vendors, including Arm, AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments, and Oracle Corporation. OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface for developing parallel applications for platforms ranging from the standard desktop computer to the supercomputer. An application built with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributed Memory
In computer science, distributed memory refers to a Multiprocessing, multiprocessor computer system in which each Central processing unit, processor has its own private Computer memory, memory. Computational tasks can only operate on local data, and if remote data are required, the computational task must communicate with one or more remote processors. In contrast, a Shared memory architecture, shared memory multiprocessor offers a single memory space used by all processors. Processors do not have to be aware where data resides, except that there may be performance penalties, and that race conditions are to be avoided. In a distributed memory system there is typically a processor, a memory, and some form of interconnection that allows programs on each processor to interact with each other. The interconnect can be organised with Network_topology#Point-to-point, point to point links or separate hardware can provide a switching network. The network topology is a key factor in deter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High Performance Fortran
High Performance Fortran (HPF) is an extension of Fortran 90 designed to support parallel computing, developed by the ''High Performance Fortran Forum'' (HPFF). The HPFF was convened and chaired by Ken Kennedy of Rice University. The first version of the HPF Report was published in 1993. Building on the array syntax introduced in Fortran 90, HPF employs a data-parallel model of computation, enabling the distribution of array computations across multiple processors. This design facilitates efficient execution on both SIMD and MIMD architectures. Key features of HPF include: * New Fortran constructs, such as FORALL, and the ability to define PURE (side-effect-free) procedures * Compiler directives for recommended array data alignment and distribution, influenced by prior efforts such as Fortran D Retrieve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Systolic Array
In parallel computer architectures, a systolic array is a homogeneous network of tightly coupled data processing units (DPUs) called cells or nodes. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbours, stores the result within itself and passes it downstream. Systolic arrays were first used in Colossus, which was an early computer used to break German Lorenz ciphers during World War II. Due to the classified nature of Colossus, they were independently invented or rediscovered by H. T. Kung and Charles Leiserson who described arrays for many dense linear algebra computations (matrix product, solving systems of linear equations, LU decomposition, etc.) for banded matrices. Early applications include computing greatest common divisors of integers and polynomials. They are sometimes classified as multiple-instruction single-data (MISD) architectures under Flynn's taxonomy, but this classification is questionable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
COFDM
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple Carrier wave, carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, Digital subscriber line, DSL internet access, wireless networks, Power-line communication, power line networks, and 4G/5G mobile communications. OFDM is a frequency-division multiplexing (FDM) scheme that was introduced by Robert W. Chang of Bell Labs in 1966. In OFDM, the incoming bitstream representing the data to be sent is divided into multiple streams. Multiple closely spaced orthogonal functions, orthogonal subcarrier signals with overlapping spectra are transmitted, with each carrier modulation, modulated with binary digit, bits from the incoming stream so multiple bits are being transmitted in parallel. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motion Compensation
Motion compensation in computing is an algorithmic technique used to predict a frame in a video given the previous and/or future frames by accounting for motion of the camera and/or objects in the video. It is employed in the encoding of video data for video compression, for example in the generation of files. Motion compensation describes a picture in terms of the transformation of a reference picture to the current picture. The reference picture may be previous in time or even from the future. When images can be accurately synthesized from previously transmitted/stored images, the compression efficiency can be improved. Motion compensation is one of the two key video compression techniques used in video coding standards, along with the discrete cosine transform (DCT). Most video coding standards, such as the H.26x and MPEG formats, typically use motion-compensated DCT hybrid coding, known as block motion compensation (BMC) or motion-compensated DCT (MC DCT). Functionality ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pipes And Filters
In software engineering, a pipeline consists of a chain of processing elements ( processes, threads, coroutines, functions, ''etc.''), arranged so that the output of each element is the input of the next. The concept is analogous to a physical pipeline. Usually some amount of buffering is provided between consecutive elements. The information that flows in these pipelines is often a stream of records, bytes, or bits, and the elements of a pipeline may be called filters. This is also called the pipe(s) and filters design pattern which is monolithic. Its advantages are simplicity and low cost while its disadvantages are lack of elasticity, fault tolerance and scalability. Connecting elements into a pipeline is analogous to function composition. Narrowly speaking, a pipeline is linear and one-directional, though sometimes the term is applied to more general flows. For example, a primarily one-directional pipeline may have some communication in the other direction, known as a ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Microprocessor
A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, Clock signal, clock-driven, Processor register, register-based, digital integrated circuit that accepts binary code, binary data as input, processes it according to instruction (computing), instructions stored in its computer memory, memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential logic, sequential digital logic, and operate on numbers and symbols represented in the binary number system. The integration of a whole CPU on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |