HOME
*





Arithmetic Frobenius
In mathematics, the Frobenius endomorphism is defined in any commutative ring ''R'' that has characteristic ''p'', where ''p'' is a prime number. Namely, the mapping φ that takes ''r'' in ''R'' to ''r''''p'' is a ring endomorphism of ''R''. The image of φ is then ''R''''p'', the subring of ''R'' consisting of ''p''-th powers. In some important cases, for example finite fields, φ is surjective. Otherwise φ is an endomorphism but not a ring ''automorphism''. The terminology of geometric Frobenius arises by applying the spectrum of a ring construction to φ. This gives a mapping :φ*: Spec(''R''''p'') → Spec(''R'') of affine schemes. Even in cases where ''R''''p'' = ''R'' this is not the identity, unless ''R'' is the prime field. Mappings created by fibre product with φ*, i.e. base changes, tend in scheme theory to be called ''geometric Frobenius''. The reason for a careful terminology is that the Frobenius automorphism in Galois groups, or defined by transport of structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck's Relative Point Of View
Grothendieck's relative point of view is a heuristic applied in certain abstract mathematical situations, with a rough meaning of taking for consideration families of 'objects' explicitly depending on parameters, as the basic field of study, rather than a single such object. It is named after Alexander Grothendieck, who made extensive use of it in treating foundational aspects of algebraic geometry. Outside that field, it has been influential particularly on category theory and categorical logic. In the usual formulation, the language of category theory is applied, to describe the point of view as treating, not objects ''X'' of a given category ''C'' as such, but morphisms :''f'': ''X'' → ''S'' where ''S'' is a fixed object. This idea is made formal in the idea of the slice category of objects of ''C'' 'above' ''S''. To move from one slice to another requires a base change; from a technical point of view base change becomes a major issue for the whole approach (see for exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Terminology
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minus Sign
The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resulting in a difference. Their use has been extended to many other meanings, more or less analogous. ''Plus'' and ''minus'' are Latin terms meaning "more" and "less", respectively. History Though the signs now seem as familiar as the alphabet or the Hindu-Arabic numerals, they are not of great antiquity. The Egyptian hieroglyphic sign for addition, for example, resembled a pair of legs walking in the direction in which the text was written (Egyptian could be written either from right to left or left to right), with the reverse sign indicating subtraction: Nicole Oresme's manuscripts from the 14th century show what may be one of the earliest uses of as a sign for plus. In early 15th century Europe, the letters "P" and "M" were generally u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Mapping
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\to Y, its inverse f^\colon Y\to X admits an explicit description: it sends each element y\in Y to the unique element x\in X such that . As an example, consider the real-valued function of a real variable given by . One can think of as the function which multiplies its input by 5 then subtracts 7 from the result. To undo this, one adds 7 to the input, then divides the result by 5. Therefore, the inverse of is the function f^\colon \R\to\R defined by f^(y) = \frac . Definitions Let be a function whose domain is the set , and whose codomain is the set . Then is ''invertible'' if there exists a function from to such that g(f(x))=x for all x\in X and f(g(y))=y for all y\in Y. If is invertible, then there is exactly one function sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transport Of Structure
In mathematics, particularly in universal algebra and category theory, transport of structure refers to the process whereby a mathematical object acquires a new structure and its canonical definitions, as a result of being isomorphic to (or otherwise identified with) another object with a pre-existing structure. Definitions by transport of structure are regarded as canonical. Since mathematical structures are often defined in reference to an underlying space, many examples of transport of structure involve spaces and mappings between them. For example, if ''V'' and ''W'' are vector spaces with (\cdot,\cdot) being an inner product on W, such that there is an isomorphism \phi from ''V'' to ''W'', then one can define an inner product cdot, \cdot/math> on ''V'' by the following rule: : _1, v_2= (\phi(v_1), \phi(v_2)) Although the equation makes sense even when \phi is not an isomorphism, it only defines an inner product on ''V'' when \phi is, since otherwise it will cause cdo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Automorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme Theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with commu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibre Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout (category theory), pushout''. Universal property Explicitly, a pullback of the morphisms and consist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]