HOME
*





Algebraic Matroid
In mathematics, an algebraic matroid is a matroid, a combinatorial structure, that expresses an abstraction of the relation of algebraic independence. Definition Given a field extension ''L''/''K'', Zorn's lemma can be used to show that there always exists a maximal algebraically independent subset of ''L'' over ''K''. Further, all the maximal algebraically independent subsets have the same cardinality, known as the transcendence degree of the extension. For every finite set ''S'' of elements of ''L'', the algebraically independent subsets of ''S'' satisfy the axioms that define the independent sets of a matroid. In this matroid, the rank of a set of elements is its transcendence degree, and the flat generated by a set ''T'' of elements is the intersection of ''L'' with the field ''K'' 'T''Oxley (1992) p.216 A matroid that can be generated in this way is called ''algebraic'' or ''algebraically representable''.Oxley (1992) p.218 No good characterization of algebraic matroids is k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Independence
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxford University Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid Dual
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylaw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Field
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matroid Minor
In the mathematical theory of matroids, a minor of a matroid ''M'' is another matroid ''N'' that is obtained from ''M'' by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. Definitions If ''M'' is a matroid on the set ''E'' and ''S'' is a subset of ''E'', then the restriction of ''M'' to ''S'', written ''M'' , ''S'', is the matroid on the set ''S'' whose independent sets are the independent sets of ''M'' that are contained in ''S''. Its circuits are the circuits of ''M'' that are contained in ''S'' and its rank function is that of ''M'' restricted to subsets of ''S''. If ''T'' is an independent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Extension
In field theory, a simple extension is a field extension which is generated by the adjunction of a single element. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions. Definition A field extension is called a simple extension if there exists an element in ''L'' with :L = K(\theta). This means that every element of can be expressed as a rational fraction in , with coefficients in . There are two different sort of simple extensions. The element may be transcendental over , which means that it is not a root of any polynomial with coefficients in . In this case K(\theta) is isomorphic to the field of rational functions K(X). Otherwise, is algebraic over ; that is, is a root of a polynomial over . The monic polynomial F(X) of minimal degree , with as a root, is called the minimal polynomial of . Its degree equals the degree of the field extension, that is, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indeterminate (variable)
In mathematics, particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else except itself. It may be used as a placeholder in objects such as polynomials and formal power series. In particular: * It does not designate a constant or a parameter of the problem. * It is not an unknown that could be solved for. * It is not a variable designating a function argument, or a variable being summed or integrated over. * It is not any type of bound variable. * It is just a symbol used in an entirely formal way. When used as placeholders, a common operation is to substitute mathematical expressions (of an appropriate type) for the indeterminates. By a common abuse of language, mathematical texts may not clearly distinguish indeterminates from ordinary variables. Polynomials A polynomial in an indeterminate X is an expression of the form a_0 + a_1X + a_2X^2 + \ldots + a_nX^n, where the ''a_i'' are called the coeffici ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]