HOME
*





Additive Combinatorics
Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are ''inverse problems'': given the size of the sumset ''A'' + ''B'' is small, what can we say about the structures of A and B? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions. Another typical problem is to find a lower bound for , A + B, in terms of , A, and , B, . This can be viewed as an inverse problem with the given information that , A+B, is sufficiently small and the structural conclusion is then of the form that either A or B is the empty set; however, in literature, such problems are sometimes considered to be direct problems as well. Examples of this type include the Erdős–Heilbronn Conjecture (for a restricted sumset) and the Cauchy–Davenport Theorem. The methods used for tackling such questions often come from many different fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Combinatorics
Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are ''inverse problems'': given the size of the sumset ''A'' + ''B'' is small, what can we say about the structures of A and B? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions. Another typical problem is to find a lower bound for , A + B, in terms of , A, and , B, . This can be viewed as an inverse problem with the given information that , A+B, is sufficiently small and the structural conclusion is then of the form that either A or B is the empty set; however, in literature, such problems are sometimes considered to be direct problems as well. Examples of this type include the Erdős–Heilbronn Conjecture (for a restricted sumset) and the Cauchy–Davenport Theorem. The methods used for tackling such questions often come from many different fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ruzsa Triangle Inequality
In additive combinatorics, the Ruzsa triangle inequality, also known as the Ruzsa difference triangle inequality to differentiate it from some of its variants, bounds the size of the difference of two sets in terms of the sizes of both their differences with a third set. It was proven by Imre Ruzsa (1996), and is so named for its resemblance to the triangle inequality. It is an important lemma in the proof of the Plünnecke-Ruzsa inequality. Statement If A and B are subsets of a group, then the sumset notation A+B is used to denote \. Similarly, A-B denotes \. Then, the Ruzsa triangle inequality states the following. An alternate formulation involves the notion of the ''Ruzsa distance''. Definition. If A and B are finite subsets of a group, then the Ruzsa distance between these two sets, denoted d(A, B), is defined to be :d(A, B) = \log \frac. Then, the Ruzsa triangle inequality has the following equivalent formulation: This formulation resembles the triangle inequality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Plünnecke–Ruzsa Inequality
In additive combinatorics, the Plünnecke–Ruzsa inequality is an inequality that bounds the size of various sumsets of a set B, given that there is another set A so that A+B is not much larger than A. A slightly weaker version of this inequality was originally proven and published by Helmut Plünnecke (1970). Imre Ruzsa (1989) later published a simpler proof of the current, more general, version of the inequality. The inequality forms a crucial step in the proof of Freiman's theorem. Statement The following sumset notation is standard in additive combinatorics. For subsets A and B of an abelian group and a natural number k, the following are defined: * A+B=\ * A-B=\ * kA=\underbrace_ The set A + B is known as the sumset of A and B. Plünnecke-Ruzsa inequality The most commonly cited version of the statement of the Plünnecke–Ruzsa inequality is the following. This is often used when A = B, in which case the constant K = , 2A, /, A, is known as the doubling constant of A. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van H
A van is a type of road vehicle used for transporting goods or people. Depending on the type of van, it can be bigger or smaller than a pickup truck and SUV, and bigger than a common car. There is some varying in the scope of the word across the different English-speaking countries. The smallest vans, microvans, are used for transporting either goods or people in tiny quantities. Mini MPVs, compact MPVs, and MPVs are all small vans usually used for transporting people in small quantities. Larger vans with passenger seats are used for institutional purposes, such as transporting students. Larger vans with only front seats are often used for business purposes, to carry goods and equipment. Specially-equipped vans are used by television stations as mobile studios. Postal services and courier companies use large step vans to deliver packages. Word origin and usage Van meaning a type of vehicle arose as a contraction of the word caravan. The earliest records of a van as a vehicl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terence Tao
Terence Chi-Shen Tao (; born 17 July 1975) is an Australian-American mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Life and career Family Tao's parents are first-generation immigrants from Hong Kong to Australia.''Wen Wei Po'', Page A4, 24 Au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sumset
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets A and B of an abelian group G (written additively) is defined to be the set of all sums of an element from A with an element from B. That is, :A + B = \. The n-fold iterated sumset of A is :nA = A + \cdots + A, where there are n summands. Many of the questions and results of additive combinatorics and additive number theory can be phrased in terms of sumsets. For example, Lagrange's four-square theorem can be written succinctly in the form :4\Box = \mathbb, where \Box is the set of square numbers. A subject that has received a fair amount of study is that of sets with ''small doubling'', where the size of the set A+A is small (compared to the size of A); see for example Freiman's theorem. See also *Restricted sumset * Sidon set *Sum-free set *Schnirelmann density *Shapley–Folkman lemma *X + Y sorting References * * * *Terence Tao and Van Vu, ''Additive Combinatorics'', Cambridge Universit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though ''analysis'' as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (''analysis'', "a breaking-up" or "an untying;" from ''ana-'' "up, throughout" and ''lysis'' "a loosening"). From it also comes the word's plural, ''analyses''. As a formal concept, the method has variously been ascribed to Alhazen, René Descartes (''Discourse on the Method''), and Galileo Galilei. It has also been ascribed to Isaac Newton, in the form of a practical method of physical discovery (which he did not name). The converse of analysis is synthesis: putting the pieces back together again in new or different whole. Applications Science The field of chemistry uses analysis in thr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]