Transfinite Diameter And Logarithmic Capacity
Transfinite may refer to: * Transfinite number, a number larger than all finite numbers, yet not absolutely infinite * Transfinite induction, an extension of mathematical induction to well-ordered sets ** Transfinite recursion * Transfinite arithmetic In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an e ..., the generalization of elementary arithmetic to infinite quantities * Transfinite interpolation, a method in numerical analysis to construct functions over a planar domain so that they match a given function on the boundary {{ disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transfinite Number
In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term ''transfinite'' was coined by Georg Cantor in 1895, who wished to avoid some of the implications of the word ''infinite'' in connection with these objects, which were, nevertheless, not ''finite''. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term "transfinite" also remains in use. Definition Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then is also true. Then transfinite induction tells us that is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that is true. * Successor case: Prove that for any , follows from (and, if necessary, for all ). * Limit case: Prove that for any [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transfinite Recursion
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then is also true. Then transfinite induction tells us that is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that is true. * Successor case: Prove that for any , follows from (and, if necessary, for all ). * Limit case: Prove that for any [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transfinite Arithmetic
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The union of two disjoint well-ordered sets ''S'' and ''T'' can be well-ordered. The order-type of that union is the ordinal that results from adding the order-types of ''S'' and ''T''. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace ''S'' by × ''S'' and ''T'' by × ''T''. This way, the well-ordered set ''S'' is written "to the left" of the well-order ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |