Zinbiel Algebra
   HOME
*





Zinbiel Algebra
In mathematics, a Zinbiel algebra or dual Leibniz algebra is a module over a commutative ring with a bilinear product satisfying the defining identity: :(a \circ b) \circ c = a \circ (b \circ c) + a \circ (c \circ b). Zinbiel algebras were introduced by . The name was proposed by Jean-Michel Lemaire as being "opposite" to Leibniz algebra. In any Zinbiel algebra, the symmetrised product :a \star b = a \circ b + b \circ a is associative. A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. The free Zinbiel algebra over ''V'' is the tensor algebra with product :(x_0 \otimes \cdots \otimes x_p) \circ (x_ \otimes \cdots \otimes x_) = x_0 \sum_ (x_1,\ldots,x_), where the sum is over all (p,q) shuffles Shuffling is a procedure used to randomize a deck of playing cards to provide an element of chance in card games. Shuffling is often followed by a cut, to help ensure that the shuffler has not manipulated the outcome. __TOC__ Techniques Overha .... References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V and w_1, w_2 \in W, then B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w) and B(v, w_1 + w_2) = B(v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leibniz Algebra
In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module ''L'' over a commutative ring ''R'' with a bilinear product _ , _ satisfying the Leibniz identity : a,bc] = ,c.html"_;"title=",,[b,c+__a,cb.html"_;"title=",c">,[b,c+__a,c.html"_;"title=",c.html"_;"title=",[b,c">,[b,c+__a,c">,c.html"_;"title=",[b,c">,[b,c+__a,cb">,c">,[b,c+__a,c.html"_;"title=",c.html"_;"title=",[b,c">,[b,c+__a,c">,c.html"_;"title=",[b,c">,[b,c+__a,cb_\,_ In_other_words,_right_multiplication_by_any_element_''c''_is_a_derivation_(abstract_algebra).html" "title=",c">,[b,c+__a,cb.html" ;"title=",c">,[b,c+__a,c.html" ;"title=",c.html" ;"title=",[b,c">,[b,c+ a,c">,c.html" ;"title=",[b,c">,[b,c+ a,cb">,c">,[b,c+__a,c.html" ;"title=",c.html" ;"title=",[b,c">,[b,c+ a,c">,c.html" ;"title=",[b,c">,[b,c+ a,cb \, In other words, right multiplication by any element ''c'' is a derivation (abstract algebra)">derivation. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Koszul Duality
In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras (semisimple algebra) and topology (e.g., equivariant cohomology). The prototype example, due to Joseph Bernstein, Israel Gelfand, and Sergei Gelfand, is the rough duality between the derived category of a symmetric algebra and that of an exterior algebra. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature. Koszul duality for modules over Koszul algebras The simplest, and in a sense prototypical case of Koszul duality arises as follows: for a 1-dimensional vector space ''V'' over a field ''k'', with dual vector space V^*, the exterior algebra of ''V'' has two non-trivial components, namely :\bigwedge^1 V=V, \quad \bigwedge^0 V = k. This exterior algebra and the symmetric algebra of V^*, \operatorname(V^*), serve to build a two-step chain comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, all a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shuffle Product
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Duke Mathematical Journal
''Duke Mathematical Journal'' is a peer-reviewed mathematics journal published by Duke University Press. It was established in 1935. The founding editors-in-chief were David Widder, Arthur Coble, and Joseph Miller Thomas Joseph Miller Thomas (16 January 1898 – 1979) was an American mathematician, known for the Thomas decomposition of algebraic and differential systems. Thomas received his Ph.D., supervised by Frederick Wahn Beal, from the University of Pennsylva .... The first issue included a paper by Solomon Lefschetz. Leonard Carlitz served on the editorial board for 35 years, from 1938 to 1973. The current managing editor is Richard Hain (Duke University). Impact According to the journal homepage, the journal has a 2018 impact factor of 2.194, ranking it in the top ten mathematics journals in the world. References External links

* Mathematics journals Duke University, Mathematical Journal Publications established in 1935 Multilingual journals English-language jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]