Z380
   HOME
*



picture info

Z380
The Z380 and Z382 are Zilog 16-bit/ 32-bit processor from 1994.https://www.zilog.com/docs/datacomm/pb0075.pdf It is Z80 compatible, but it was released much later than its competitors (the Intel 386 and Motorola 68020) and as a result was never able to gain any significant market leverage. On the other hand, the newer and faster eZ80 family was more successful. The chip supports 32-bit processing with a clock speed of up to 20 MHz. The Z380 is incompatible with Zilog's older Z800 and Z280. As the Z380 is derived from the newer Z180 it is a less mini computer like design than these older processors, with fewer features. Instead, it has a wider ALU and register length of 32-bits. It can therefore address 4 GB directly: * Similar pipelined execution or fetch/execute overlap as the Z280 page 45 * Simpler MMU, without memory protection. * Minimum of 2 clocks/ instruction. This is like the Z280, but also for 32-bit operations. * No on-chip cache Cache, caching, or cachà ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zilog Z800
The Zilog Z800 was a 16-bit microprocessor designed by Zilog and meant to be released in 1985. It was instruction compatible with their existing Z80, and differed primarily in having on-chip cache and a memory management unit (MMU) to provide a 16 MB address range. It also added a huge number of new more orthogonal instructions and addressing modes. Zilog essentially ignored the Z800 in favor of their 32-bit Z80000 and the Z800 never entered mass production. After more than five years had elapsed since it was originally introduced, the effort was redubbed the Z280 in 1986.EDN November 27, 1986, p133 An actual product, the Z280 would ship in 1987 with almost the same design as the Z800, but this time implemented in CMOS. The Z800 contrasts with Zilog's first 16-bit effort, the Zilog Z8000, in that the Z800 was intended to be Z80 compatible, while the Z8000 was only Z80-like and did not offer any direct compatibility. Short description There was no expansion of the register set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zilog Z80
The Z80 is an 8-bit microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his 11 employees starting in early 1975. The first working samples were delivered in March 1976, and it was officially introduced on the market in July 1976. With the revenue from the Z80, the company built its own chip factories and grew to over a thousand employees over the following two years. The Zilog Z80 is a software-compatible extension and enhancement of the Intel 8080 and, like it, was mainly aimed at embedded systems. Although used in that role, the Z80 also became one of the most widely used CPUs in desktop computers and home computers from the 1970s to the mid-1980s. It was also common in military applications, musical equipment such as synthesizers (like the Roland Jupiter-8), and coin-operated arcade games of the late 1970s and early 1980s, including '' Pac-Man''. Zilog licensed the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zilog EZ80
The Zilog eZ80 is an 8-bit microprocessor from Zilog, introduced in 2001. eZ80 is an updated version of the company's first product, the Z80 microprocessor. Design The eZ80 (like the Z380) is binary compatible with the Z80 and Z180, but almost three times as fast as the original Z80 chip at the same clock frequency. The eZ80 has a three-stage pipeline. Available at up to 50 MHz (2004), the performance is comparable to a Z80 clocked at 150 MHz if fast memory is used (i.e. no wait states for opcode fetches, for data, or for I/O) or even higher in some applications (a 16-bit addition is 11 times as fast as in the original). The eZ80 also supports direct continuous addressing of 16  MB of memory without a memory management unit, by extending most registers (HL, BC, DE, IX, IY, SP, and PC) from 16 to 24 bits. In order to do so, the CPU has a full 24-bit address mode called ADL mode. Z80 register pairs are extended to 24 bits and renamed with U e.g. HL is now HL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zilog
Zilog, Inc. is an American manufacturer of microprocessors and 8-bit and 16-bit microcontrollers. It is also a supplier of application-specific embedded system-on-chip (SoC) products. Its most famous product is the Z80 series of 8-bit microprocessors that were compatible with the Intel 8080 but significantly cheaper. The Z80 was widely used during the 1980s in many popular home computers such as the TRS-80, MSX, Amstrad CPC and the ZX Spectrum, as well as arcade games such as '' Pac-Man''. The company also made 16- and 32-bit processors, but these did not see widespread use. From the 1990s, the company focused primarily on the microcontroller market. The name (pronunciation varies) is an acronym of ''Z integrated logic'', also thought of as "Z for the last word of Integrated Logic". In the oral history interview video which Federico Faggin (co-founder of Zilog) recorded for the Computer History Museum, he pronounced Zilog with a long "i" () consistently. History Zilog was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zilog Z382 1
Zilog, Inc. is an American manufacturer of microprocessors and 8-bit and 16-bit microcontrollers. It is also a supplier of application-specific embedded system-on-chip (SoC) products. Its most famous product is the Z80 series of 8-bit microprocessors that were compatible with the Intel 8080 but significantly cheaper. The Z80 was widely used during the 1980s in many popular home computers such as the TRS-80, MSX, Amstrad CPC and the ZX Spectrum, as well as arcade games such as ''Pac-Man''. The company also made 16- and 32-bit processors, but these did not see widespread use. From the 1990s, the company focused primarily on the microcontroller market. The name (pronunciation varies) is an acronym of ''Z integrated logic'', also thought of as "Z for the last word of Integrated Logic". In the oral history interview video which Federico Faggin (co-founder of Zilog) recorded for the Computer History Museum, he pronounced Zilog with a long "i" () consistently. History Zilog was star ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zilog Microprocessors
Zilog, Inc. is an American manufacturer of microprocessors and 8-bit and 16-bit microcontrollers. It is also a supplier of application-specific embedded system-on-chip (SoC) products. Its most famous product is the Z80 series of 8-bit microprocessors that were compatible with the Intel 8080 but significantly cheaper. The Z80 was widely used during the 1980s in many popular home computers such as the TRS-80, MSX, Amstrad CPC and the ZX Spectrum, as well as arcade games such as ''Pac-Man''. The company also made 16- and 32-bit processors, but these did not see widespread use. From the 1990s, the company focused primarily on the microcontroller market. The name (pronunciation varies) is an acronym of ''Z integrated logic'', also thought of as "Z for the last word of Integrated Logic". In the oral history interview video which Federico Faggin (co-founder of Zilog) recorded for the Computer History Museum, he pronounced Zilog with a long "i" () consistently. History Zilog was sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Pipeline
In computer engineering, instruction pipelining or ILP is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions processed in parallel. Concept and motivation In a pipelined computer, instructions flow through the central processing unit (CPU) in stages. For example, it might have one stage for each step of the von Neumann cycle: Fetch the instruction, fetch the operands, do the instruction, write the results. A pipelined computer usually has "pipeline registers" after each stage. These store information from the instruction and calculations so that the logic gates of the next stage can do the next step. This arrangement lets the CPU complete an instruction on each clock cycle. It is common for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trap (computing)
In digital computers, an interrupt (sometimes referred to as a trap) is a request for the processor to ''interrupt'' currently executing code (when permitted), so that the event can be processed in a timely manner. If the request is accepted, the processor will suspend its current activities, save its state, and execute a function called an ''interrupt handler'' (or an ''interrupt service routine'', ISR) to deal with the event. This interruption is often temporary, allowing the software to resume normal activities after the interrupt handler finishes, although the interrupt could instead indicate a fatal error. Interrupts are commonly used by hardware devices to indicate electronic or physical state changes that require time-sensitive attention. Interrupts are also commonly used to implement computer multitasking, especially in real-time computing. Systems that use interrupts in these ways are said to be interrupt-driven. Types Interrupt signals may be issued in response to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CPU Cache
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1. The cache memory is typically implemented with static random-access memory (SRAM), in modern CPUs by far the largest part of them by chip area, but SRAM is not always used for all levels (of I- or D-cache), or even any level, sometimes some latter or all levels are implemented with eDRAM. Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned above), such as the translation lookaside buffer (TLB) which is part of the memory management unit (MMU) w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Set
In computer science, an instruction set architecture (ISA), also called computer architecture, is an abstract model of a computer. A device that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ''implementation''. In general, an ISA defines the supported instructions, data types, registers, the hardware support for managing main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of a family of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as performance, physical size, and monetary cost (among other things), but that are capable of running the same machine code, so that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Protection
Memory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it. This prevents a bug or malware within a process from affecting other processes, or the operating system itself. Protection may encompass all accesses to a specified area of memory, write accesses, or attempts to execute the contents of the area. An attempt to access unauthorized memory results in a hardware fault, e.g., a segmentation fault, storage violation exception, generally causing abnormal termination of the offending process. Memory protection for computer security includes additional techniques such as address space layout randomization and executable space protection. Methods Segmentation Segmentation refers to dividing a computer's memory into segments. A reference to a memory location incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Management Unit
A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit having all memory references passed through itself, primarily performing the translation of virtual memory addresses to physical addresses. An MMU effectively performs virtual memory management, handling at the same time memory protection, cache control, bus arbitration and, in simpler computer architectures (especially 8-bit systems), bank switching. Overview Modern MMUs typically divide the virtual address space (the range of addresses used by the processor) into pages, each having a size which is a power of 2, usually a few kilobytes, but they may be much larger. The bottom bits of the address (the offset within a page) are left unchanged. The upper address bits are the virtual page numbers. Page table entries Most MMUs use an in-memory table of items called a "page table", containing one "page table entry" (PTE) per page, to map virtual page numbers to ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]