HOME
*





Zones Of The Lung
The zones of the lung divide the lung into four vertical regions, based upon the relationship between the pressure in the alveoli (PA), in the arteries (Pa), in the veins (Pv) and the pulmonary interstitial pressure (Pi): * Zone 1: PA > Pa > Pv * Zone 2: Pa > PA > Pv * Zone 3: Pa > Pv > PA * Zone 4: Pa > Pi > Pv > PA This concept is generally attributed to an article by West et al. in 1964, but was actually proposed two years earlier by Permutt et al. In this article, Permutt suggests "The pressure in the pulmonary arteries and veins is less at the top than at the bottom of the lung. It is quite likely that there is a portion of the lung toward the top in an upright subject in which the pressure in the pulmonary arteries is less than alveolar pressure." The concept is as follows: Alveolar pressure (PA) at end expiration is equal to atmospheric pressure (0 cm H2O differential pressure, at zero flow), plus or minus 2 cm H2O (1.5 mmHg) throughout the lung. On the othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lung
The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of the heart. Their function in the respiratory system is to extract oxygen from the air and transfer it into the bloodstream, and to release carbon dioxide from the bloodstream into the atmosphere, in a process of gas exchange. Respiration is driven by different muscular systems in different species. Mammals, reptiles and birds use their different muscles to support and foster breathing. In earlier tetrapods, air was driven into the lungs by the pharyngeal muscles via buccal pumping, a mechanism still seen in amphibians. In humans, the main muscle of respiration that drives breathing is the diaphragm. The lungs also provide airflow that makes vocal sounds including human speech possible. Humans have two lungs, one on the left and on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pulmonary Alveolus
A pulmonary alveolus (plural: alveoli, from Latin ''alveolus'', "little cavity"), also known as an air sac or air space, is one of millions of hollow, distensible cup-shaped cavities in the lungs where oxygen is exchanged for carbon dioxide. Alveoli make up the functional tissue of the mammalian lungs known as the lung parenchyma, which takes up 90 percent of the total lung volume. Alveoli are first located in the respiratory bronchioles that mark the beginning of the respiratory zone. They are located sparsely in these bronchioles, line the walls of the alveolar ducts, and are more numerous in the blind-ended alveolar sacs. The acini are the basic units of respiration, with gas exchange taking place in all the alveoli present. The alveolar membrane is the gas exchange surface, surrounded by a network of capillaries. Across the membrane oxygen is diffused into the capillaries and carbon dioxide released from the capillaries into the alveoli to be breathed out. Alveoli are pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arteries
An artery (plural arteries) () is a blood vessel in humans and most animals that takes blood away from the heart to one or more parts of the body (tissues, lungs, brain etc.). Most arteries carry oxygenated blood; the two exceptions are the pulmonary and the umbilical arteries, which carry deoxygenated blood to the organs that oxygenate it (lungs and placenta, respectively). The effective arterial blood volume is that extracellular fluid which fills the arterial system. The arteries are part of the circulatory system, that is responsible for the delivery of oxygen and nutrients to all cells, as well as the removal of carbon dioxide and waste products, the maintenance of optimum blood pH, and the circulation of proteins and cells of the immune system. Arteries contrast with veins, which carry blood back towards the heart. Structure The anatomy of arteries can be separated into gross anatomy, at the macroscopic level, and microanatomy, which must be studied with a microscop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Veins
Veins are blood vessels in humans and most other animals that carry blood towards the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are the pulmonary and umbilical veins, both of which carry oxygenated blood to the heart. In contrast to veins, arteries carry blood away from the heart. Veins are less muscular than arteries and are often closer to the skin. There are valves (called ''pocket valves'') in most veins to prevent backflow. Structure Veins are present throughout the body as tubes that carry blood back to the heart. Veins are classified in a number of ways, including superficial vs. deep, pulmonary vs. systemic, and large vs. small. * Superficial veins are those closer to the surface of the body, and have no corresponding arteries. *Deep veins are deeper in the body and have corresponding arteries. *Perforator veins drain from the superficial to the deep veins. These are usually referred to in the lower limbs and feet. *Communic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interstitial Fluid
In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 60% (range 45 to 75%) of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells. Extracellular fluid is the internal environment of all multicellular animals, and in those animals with a blood circulatory system, a proportion of this fluid is blood plasma. Plasma and interstitial fluid are the two components that make up at least 97% of the ECF. Lymph makes up a small percentage of the interstitial fluid. The remaining small portion of the ECF includes the transcellular fluid (about 2.5%). The ECF can also be seen as having two components – plasma and lymph as a delivery system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alveolar Pressure
Alveolar pressure (Palv) is the pressure of air inside the lung Pulmonary alveolus, alveoli. When the glottis is opened and no air is flowing into or out of the lungs, alveolar pressure is equal to the atmospheric pressure, that is, zero cmH2O, cmH2O.Guyton and Hall Textbook of Medical Physiology, 12th edition. 23 May 2016 Significance During inhalation, the increased volume of Pulmonary alveolus, alveoli as a result of lung expansion decreases the intra-alveolar pressure to a value below atmospheric pressure about -1 cmH2O. This slight negative pressure is enough to move 500 ml of air into the lungs in the 2 seconds required for inspiration. At the end of inspiration, the alveolar pressure returns to atmospheric pressure (zero cmH2O). During exhalation, the opposite change occurs. The lung alveoli collapse before air is expelled from them. The alveolar pressure rises to about +1 cmH2O. This forces the 500 ml of inspired air out of the lung during the 2–3 seconds of expiratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dead Space Ventilation
Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide. Mammals breathe in and out of their lungs, wasting that part of the inhalation which remains in the conducting airways where no gas exchange can occur. Components ''Total dead space'' (also known as physiological dead space) is the sum of the anatomical dead space and the alveolar dead space. Benefits do accrue to a seemingly wasteful design for ventilation that includes dead space. #Carbon dioxide is retained, making a bicarbonate-buffered blood and interstitium possible. #Inspired air is brought to body temperature, increasing the affinity of hemoglobin for oxygen, improving O2 uptake. #Particulate matter is trapped on the mucus that lines the conducting airways, allow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Starling Resistor
The Starling resistor was invented by English physiologist Ernest Starling and used in an isolated-heart preparation during work which would later lead to the " Frank–Starling law of the heart". The device consisted of an elastic fluid-filled collapsible-tube mounted inside a chamber filled with air. The static pressure inside the chamber was used to control the degree of collapse of the tube, so providing a variable resistor. This resistance was used to simulate TPR, or total peripheral (vascular) resistance. Starling resistors have been used both as an instrument in the study of interesting physiological phenomena (e.g. pharyngeal collapse during obstructed breathing or OSA) and as a rich source of physical phenomena in their own right. Two non-linear behaviours are characteristic: 1) the “waterfall effect” wherein, subsequent to collapse, the flow through the tube becomes independent of the downstream pressure and 2) self-excited oscillations. Expiratory flow-limitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pulmonary Edema
Pulmonary edema, also known as pulmonary congestion, is excessive edema, liquid accumulation in the parenchyma, tissue and pulmonary alveolus, air spaces (usually alveoli) of the lungs. It leads to impaired gas exchange and may cause hypoxemia and respiratory failure. It is due to either failure of the left ventricle of the heart to remove oxygenated blood adequately from the pulmonary circulation (cardiogenic pulmonary edema), or an injury to the lung parenchyma, lung tissue directly or blood vessels of the lung (non-cardiogenic pulmonary edema). Treatment is focused on three aspects: firstly improving respiratory function, secondly, treating the underlying cause, and thirdly preventing further damage and assuring full recovery to the lung. Pulmonary edema, especially when sudden (acute), can lead to respiratory failure or cardiac arrest due to Hypoxia (medical), hypoxia. It is a cardinal feature of congestive heart failure. The term edema is from the Greek language, Greek (''oi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parenchyma
Parenchyma () is the bulk of functional substance in an animal organ or structure such as a tumour. In zoology it is the name for the tissue that fills the interior of flatworms. Etymology The term ''parenchyma'' is New Latin from the word παρέγχυμα ''parenchyma'' meaning 'visceral flesh', and from παρεγχεῖν ''parenchyma'' meaning 'to pour in' from παρα- ''para-'' 'beside' + ἐν ''en-'' 'in' + χεῖν ''chyma'' 'to pour'. Originally, Erasistratus and other anatomists used it to refer to certain human tissues. Later, it was also applied to plant tissues by Nehemiah Grew. Structure The parenchyma is the ''functional'' parts of an organ (anatomy), organ, or of a structure such as a tumour in the body. This is in contrast to the Stroma (animal tissue), stroma, which refers to the ''structural'' tissue of organs or of structures, namely, the connective tissues. Brain The brain parenchyma refers to the functional tissue in the brain that is made up of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ventilation/perfusion Ratio
In respiratory physiology, the ventilation/perfusion ratio (V/Q ratio) is a ratio used to assess the efficiency and adequacy of the matching of two variables: * V – Ventilation (physiology), ventilation – the air that reaches the Pulmonary alveolus, alveoli * Q – perfusion – the blood that reaches the alveoli via the capillaries The V/Q ratio can therefore be defined as the ratio of the amount of air reaching the alveoli per minute to the amount of blood reaching the alveoli per minute—a ratio of volumetric flow rates. These two variables, V and Q, constitute the main determinants of the blood oxygen (O2) and carbon dioxide (CO2) concentration. The V/Q ratio can be measured with a ventilation/perfusion scan. A V/Q mismatch can cause Respiratory failure#Type 1, Type 1 respiratory failure. Physiology Ideally, the oxygen provided via ventilation would be just enough to saturate the blood fully. In the typical adult, 1 litre of blood can hold about 200 mL of oxygen; 1 lit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apex Of Lung
The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of the heart. Their function in the respiratory system is to extract oxygen from the air and transfer it into the bloodstream, and to release carbon dioxide from the bloodstream into the atmosphere, in a process of gas exchange. Respiration is driven by different muscular systems in different species. Mammals, reptiles and birds use their different muscles to support and foster breathing. In earlier tetrapods, air was driven into the lungs by the pharyngeal muscles via buccal pumping, a mechanism still seen in amphibians. In humans, the main muscle of respiration that drives breathing is the diaphragm. The lungs also provide airflow that makes vocal sounds including human speech possible. Humans have two lungs, one on the left and on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]