HOME
*





Ziegler–Nichols Method
The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller. It was developed by John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the ''I'' (integral) and ''D'' (derivative) gains to zero. The "P" (proportional) gain, K_p is then increased (from zero) until it reaches the ultimate gain K_u, at which the output of the control loop has stable and consistent oscillations. K_u and the oscillation period T_u are then used to set the P, I, and D gains depending on the type of controller used and behaviour desired: The ultimate gain (K_u) is defined as 1/M, where M = the amplitude ratio, K_i = K_p/T_i and K_d = K_p T_d. These 3 parameters are used to establish the correction u(t) from the error e(t) via the equation: :u(t) = K_p \left( e(t) + \frac \int_0^t e(\tau) \, d\tau + T_d \frac \right) which has the following transfer function relationship between error and controller output: :u(s) = K_p \left( 1 + \frac + T_ds \right)e(s) = K_p \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic
A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Examples that employ heuristics include using trial and error, a rule of thumb or an educated guess. Heuristics are the strategies derived from previous experiences with similar problems. These strategies depend on using readily accessible, though loosely applicable, information to control problem solving in human beings, machines and abstract issues. When an individual applies a heuristic in practice, it generally performs as expected. However it can alternatively cre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PID Controller
A proportional–integral–derivative controller (PID controller or three-term controller) is a control loop mechanism employing feedback that is widely used in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an ''error value'' e(t) as the difference between a desired setpoint (SP) and a measured process variable (PV) and applies a correction based on proportional, integral, and derivative terms (denoted ''P'', ''I'', and ''D'' respectively), hence the name. In practical terms, PID automatically applies an accurate and responsive correction to a control function. An everyday example is the cruise control on a car, where ascending a hill would lower speed if constant engine power were applied. The controller's PID algorithm restores the measured speed to the desired speed with minimal delay and overshoot by increasing the power output of the engine in a controlled manner. The fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John G
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope Joh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nathaniel B
, nickname = {{Plainlist, * Nat * Nate , footnotes = Nathaniel is an English variant of the biblical Greek name Nathanael. People with the name Nathaniel * Nathaniel Archibald (1952–2018), American basketball player * Nate Archibald (born 1948), American basketball player * Nathaniel Ayers (born 1951), American musician who is the subject of the 2009 film ''The Soloist'' * Nathaniel Bacon (1647–1676), Virginia colonist who instigated Bacon's Rebellion * Nathaniel Prentice Banks (1816–1894), American politician and American Civil War General * Nat Bates (born 1931), two-term mayor of Richmond, California * Nathaniel Berhow (2003–2019), perpetrator of the Saugus High School shooting in 2019 * Nathaniel Bowditch (1773–1838), American mathematician, father of modern maritime navigation * Nathaniel Buzolic (born 1983), Australian actor * Nathaniel Chalobah (born 1994), English footballer * Nathaniel Clayton (1833–1895), British politician * Nat King Cole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Overshoot (signal)
In signal processing, control theory, electronics, and mathematics, overshoot is the occurrence of a signal or function exceeding its target. Undershoot is the same phenomenon in the opposite direction. It arises especially in the step response of bandlimited systems such as low-pass filters. It is often followed by ringing, and at times conflated with the latter. Definition Maximum overshoot is defined in Katsuhiko Ogata's ''Discrete-time control systems'' as "the maximum peak value of the response curve measured from the desired response of the system." Control theory In control theory, overshoot refers to an output exceeding its final, steady-state value. For a step input, the ''percentage overshoot'' (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the ''overshoot'' is just the maximum value of the step response minus one. Also see the definition of ''overshoot'' in an electronics context. For second-order system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]