HOME
*





ZPL (complexity)
In computational complexity theory, NL (Nondeterministic Logarithmic-space) is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. NL is a generalization of L, the class for logspace problems on a deterministic Turing machine. Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that L is contained in NL. NL can be formally defined in terms of the computational resource nondeterministic space (or NSPACE) as NL = NSPACE(log ''n''). Important results in complexity theory allow us to relate this complexity class with other classes, telling us about the relative power of the resources involved. Results in the field of algorithms, on the other hand, tell us which problems can be solved with this resource. Like much of complexity theory, many important questions about NL are still open (see Unsolved problems in computer science). Occasionally NL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

2-satisfiability
In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time. Instances of the 2-satisfiability problem are typically expressed as Boolean formulas of a special type, called conjunctive normal form (2-CNF) or Krom formulas. Alternatively, they may be expressed as a special type of directed graph, the implication graph, which expresses the variables of an instance and their negations as vertices in a graph, and constraints on pairs of variables as directed edges. Both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NC (complexity)
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 Just as the class P can be thought of as the tractable problems ( Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 labelle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel Prize
The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory (ACM SIGACT). The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the " P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time. The Gödel Prize has been awarded since 1993. The prize is awarded either at STOC (ACM Symposium on Theory of Computing, one of the main North American conferences in theoretical computer science) or ICALP (International Colloquium on Automata, Languages and Programming, one of the main European conferences in the field). To be eligible for the prize, a paper must be published ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Róbert Szelepcsényi
Róbert Szelepcsényi (; born 19 August 1966, Žilina) is a Slovak computer scientist of Hungarian descent and a member of the Faculty of Mathematics, Physics and Informatics of Comenius University in Bratislava. His results on the closure of non-deterministic space under complement, independently obtained in 1987 also by Neil Immerman (the result known as the Immerman–Szelepcsényi theorem), brought the Gödel Prize of ACM and EATCS to both of them in 1995. Scientific articles * Róbert Szelepcsényi: The Method of Forced Enumeration for Nondeterministic Automata. ''Acta Informatica ''Acta Informatica'' is a peer-reviewed scientific journal publishing original research papers in computer science. The journal is known mostly for publications in theoretical computer science. One of the two 1988 papers awarded the Gödel Prize ...'' 26(3): 279-284 (1988) References Slovak computer scientists Hungarian computer scientists 20th-century Hungarian mathematicians 21 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neil Immerman
Neil Immerman (born 24 November 1953, Manhasset, New York) is an American theoretical computer scientist, a professor of computer science at the University of Massachusetts Amherst.Faculty directory: Neil Immerman
Computer Science Department, , retrieved 2010-01-23.
He is one of the key developers of , an approach he is currently applying to research in model checking, database theory, and computational complexity theory. Professor Immerman is an ed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Immerman–Szelepcsényi Theorem
In computational complexity theory, the Immerman–Szelepcsényi theorem states that nondeterministic space complexity classes are closed under complementation. It was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(''s''(''n'')) = co-NSPACE(''s''(''n'')) for any function ''s''(''n'') ≥ log ''n''. The result is equivalently stated as NL = co-NL; although this is the special case when ''s''(''n'') = log ''n'', it implies the general theorem by a standard padding argument. The result solved the second LBA problem. In other words, if a nondeterministic machine can solve a problem, another machine with the same resource bounds can solve its complement problem (with the ''yes'' and ''no'' answers reversed) in the same asymptotic amount of space. No similar result is known for the time complexity classes, and indeed it is conjectured that NP is not equal to c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complement (complexity)
In computational complexity theory, the complement of a decision problem is the decision problem resulting from reversing the ''yes'' and ''no'' answers. Equivalently, if we define decision problems as sets of finite strings, then the complement of this set over some fixed domain is its complement problem. For example, one important problem is whether a number is a prime number. Its complement is to determine whether a number is a composite number (a number which is not prime). Here the domain of the complement is the set of all integers exceeding one. There is a Turing reduction from every problem to its complement problem. The complement operation is an involution, meaning it "undoes itself", or the complement of the complement is the original problem. One can generalize this to the complement of a complexity class, called the complement class, which is the set of complements of every problem in the class. If a class is called C, its complement is conventionally labelled co-C. No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial-time Algorithm
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P (complexity)
In computational complexity theory, P, also known as PTIME or DTIME(''n''O(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or " tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb. Definition A language ''L'' is in P if and only if there exists a deterministic Turing machine ''M'', such that * ''M'' runs for polynomial time on all inputs * For all ''x'' in ''L'', ''M'' outputs 1 * For all ''x'' not in ''L'', ''M'' outputs 0 P can also be viewed as a uniform family of boolean circuits. A language ''L'' is in P if and only if there exists a polynomial-time uniform family of boolean circuits \, such that * For all n \in \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]