HOME
*





Yamabe Invariant
In mathematics, in the field of differential geometry, the Yamabe invariant, also referred to as the sigma constant, is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H. Yamabe. Definition Let M be a compact smooth manifold (without boundary) of dimension n\geq 2. The normalized Einstein–Hilbert functional \mathcal assigns to each Riemannian metric g on M a real number as follows: : \mathcal(g) = \frac, where R_g is the scalar curvature of g and dV_g is the volume density associated to the metric g. The exponent in the denominator is chosen so that the functional is scale-invariant: for every positive real constant c, it satisfies \mathcal(cg) = \mathcal(g). We may think of \mathcal(g) as measuring the average scalar curvature of g over M. It was conjectured by Yamabe that every conformal class of metrics contains a metric of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauss Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, depending only on distances that are measured “within” or along the surface, not on the way it is isometrically embedded in Euclidean space. This is the content of the ''Theorema egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the ''Theorema egregium'' in 1827. Informal definition At any point on a surface, we can find a normal vector that is at right angles to the surface; planes containing th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael T
Michael may refer to: People * Michael (given name), a given name * Michael (surname), including a list of people with the surname Michael Given name "Michael" * Michael (archangel), ''first'' of God's archangels in the Jewish, Christian and Islamic religions * Michael (bishop elect), English 13th-century Bishop of Hereford elect * Michael (Khoroshy) (1885–1977), cleric of the Ukrainian Orthodox Church of Canada * Michael Donnellan (1915–1985), Irish-born London fashion designer, often referred to simply as "Michael" * Michael (footballer, born 1982), Brazilian footballer * Michael (footballer, born 1983), Brazilian footballer * Michael (footballer, born 1993), Brazilian footballer * Michael (footballer, born February 1996), Brazilian footballer * Michael (footballer, born March 1996), Brazilian footballer * Michael (footballer, born 1999), Brazilian footballer Rulers =Byzantine emperors= *Michael I Rangabe (d. 844), married the daughter of Emperor Nikephoros I *Mic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yamabe Flow
In differential geometry, the Yamabe flow is an intrinsic geometric flow—a process which deforms the metric of a Riemannian manifold. First introduced by Richard S. Hamilton, Yamabe flow is for noncompact manifolds, and is the negative ''L''2- gradient flow of the (normalized) total scalar curvature, restricted to a given conformal class: it can be interpreted as deforming a Riemannian metric to a conformal metric of constant scalar curvature, when this flow converges. The Yamabe flow was introduced in response to Richard S. Hamilton's own work on the Ricci flow and Rick Schoen's solution of the Yamabe problem on manifolds of positive conformal Yamabe invariant. Main results The fixed points of the Yamabe flow are metrics of constant scalar curvature in the given conformal class. The flow was first studied in the 1980s in unpublished notes of Richard Hamilton. Hamilton conjectured that, for every initial metric, the flow converges to a conformal metric of constant scalar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ricci Flow
In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation. The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen. Following Shing-Tung Yau's suggestion that the singularities of solutions of the Ricci flow could identify the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Projective Space
In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction As with all projective spaces, RP''n'' is formed by taking the quotient of under the equivalence relation for all real numbers . For all ''x'' in one can always find a ''λ'' such that ''λx'' has norm 1. There are precisely two such ''λ'' differing by sign. Thus RP''n'' can also be formed by identifying antipodal points of the unit ''n''-sphere, ''S''''n'', in R''n''+1. One can further restrict to the upper hemisphere of ''S''''n'' and merely identify antipodal points on the bounding equator. This shows that RP''n'' is also equivalent to the closed ''n''-dimensional disk, ''D''''n'', with antipodal points on the boundary, , identified. Low-dimensional examples * RP1 is called the real projective line, which is topologically equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the centre (geometry), centre of the sphere, and is the sphere's radius. The earliest known mentions of spheres appear in the work of the Greek mathematics, ancient Greek mathematicians. The sphere is a fundamental object in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubble (physics), Bubbles such as soap bubbles take a spherical shape in equilibrium. spherical Earth, The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres rolling, roll smoothly in any direction, so mos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poincaré Conjecture
In the mathematics, mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the Characterization (mathematics), characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in 1904, the Grigori Perelman's theorem concerns spaces that locally look like ordinary Euclidean space, three-dimensional space but which are finite in extent. Poincaré hypothesized that if such a space has the additional property that each path (topology), loop in the space can be continuously tightened to a point, then it is necessarily a 3-sphere, three-dimensional sphere. Attempts to resolve the conjecture drove much progress in the field of geometric topology during the 20th century. The Perelman's proof built upon Richard S. Hamilton's ideas of using the Ricci flow to solve the problem. By developing a number of breakthrough new techniques and results in the theory of Ricci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seiberg–Witten Theory
In theoretical physics, Seiberg–Witten theory is a theory that determines an exact low-energy effective action (for massless degrees of freedom) of a \mathcal = 2 supersymmetric gauge theory—namely the metric of the moduli space of vacua. Seiberg–Witten curves In general, effective Lagrangians of supersymmetric gauge theories are largely determined by their holomorphic properties and their behavior near the singularities. In particular, in gauge theory with \mathcal = 2 extended supersymmetry, the moduli space of vacua is a special Kähler manifold and its Kähler potential is constrained by above conditions. In the original approach, by Seiberg and Witten, holomorphy and electric-magnetic duality constraints are strong enough to almost uniquely constrain the prepotential, and therefore the metric of the moduli space of vacua, for theories with SU(2) gauge group. More generally, consider the example with gauge group SU(n). The classical potential is This vanishes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fubini–Study Metric
In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study. A Hermitian form in (the vector space) C''n''+1 defines a unitary subgroup U(''n''+1) in GL(''n''+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(''n''+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CP''n'' is a symmetric space. The particular normalization on the metric depends on the application. In Riemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the (2''n''+1)-sphere. In algebraic geometry, one uses a normalization making CP''n'' a Hodge manifold. Construction The Fubini–Study metric arises naturally in the quotient space construction of complex projective space. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]