HOME
*





Y(4260)
The Y(4260) is an anomalous particle with an energy of 4260 MeV which does not appear to fit into the quark model. It was discovered by the BaBar experiment at Stanford University for the Department of Energy in California and later confirmed by several other experimental collaborations. It being a Charmonium state is unlikely because the Y(4260) is heavier than the threshold for production of two D mesons, yet sits, surprisingly in a dip in the production rate for pairs of D's. It is a possibility that it is a hybrid—a predicted but not-yet-seen type of particle, where a gluon is actually a permanent part of the makeup of the particle, instead of just an ephemeral messenger keeping the quarks bound together. See also * Meson * XYZ particle * X(3872) The X(3872) is an exotic meson candidate with a mass of 3871.68 MeV/c2 which does not fit into the quark model because of its quantum numbers. It was first discovered in 2003 by the Belle experiment in Japan and later confirmed b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


XYZ Particle
XYZ particles, also referred to as XYZ states, are recently discovered heavy mesons whose properties do not appear to fit the standard picture of charmonium and bottomonium states. They are therefore types of exotic meson. The term arises from the names given to some of the first such particles discovered: X(3872), Y(4260) and Zc(3900), although the symbols X and Y have since been deprecated by the Particle Data Group. Theoretical significance Since 2003 a frontier for the Standard Model (SM) has emerged at low energies through XYZ particle discoveries. The well-established theory of Quantum Chromodynamics (QCD) is tested by many exotic charmonium discoveries since the X(3872) was first identified at the Belle experiment in 2003. The basic model of hadron physics is the assembling of quarks into groups of 3 (baryons) or a quark and anti-quark pair (mesons). A meson with a charm quark and an anti-charm quark is called ''charmonium'', and the same parallels with the bottom quark ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charmonium
In particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. Light quarks Light quarks ( up, down, and strange) are much less massive than the heavier quarks, and so the physical states actually seen in experiments ( η, η′, and π0 mesons) are quantum mechanical mixtures of the light quark states. The much larger mass differences between the charm and bottom quarks and the lighter quarks results in states that are well defined in terms of a quark–antiquark pair of a given flavor. Heavy quarks Examples of quarkonia are the J/ψ meson (the ground state of charmonium, ) and the meson (bottomonium, ). Because of the high mass of the top quark, toponium ( θ meson) does not exist, since the top quark decays through the electroweak interaction before a bound state can form (a rare example of a weak process proceedin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zc(3900)
The Zc(3900) is a hadron, a type of subatomic particle made of quarks, believed to be the first tetraquark that has been observed experimentally. The discovery was made in 2013 by two independent research groups: one using the BES III detector at the Chinese Beijing Electron Positron Collider, the other being part of the Belle experiment group at the Japanese KEK particle physics laboratory.. The Zc(3900) is a decay product of the previously observed anomalous Y(4260) particle. The Zc(3900) in turn decays into a charged pion (π±) and a J/ψ meson. This is consistent with the Zc(3900) containing four or more quarks. The first evidence of the neutral Zc(3900) was provided by CLEO-c in 2013. It was later observed by BESIII in 2015. It decays into a neutral pion (π0) and a J/ψ meson. Researchers were expected to run decay experiments in 2013 to determine the particle's nature with more precision. See also * XYZ particle * X(3872) * Y(4140) The Y(4140) particle is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electronvolt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. When used as a unit of energy, the numerical value of 1 eV in joules (symbol J) is equivalent to the numerical value of the charge of an electron in coulombs (symbol C). Under the 2019 redefinition of the SI base units, this sets 1 eV equal to the exact value Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge ''q'' gains an energy after passing through a voltage of ''V.'' Since ''q'' must be an integer multiple of the elementary charge ''e'' for any isolated particle, the gained energy in units of electronvolts conveniently equals that integer times the voltage. It is a common unit of energy with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as '' color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Z(4430)
Z(4430) is a mesonic resonance discovered by the Belle experiment. It has a mass of . The resonant nature of the peak has been confirmed by the LHCb experiment with a significance of at least 13.9 σ. The particle is charged and is thought to have a quark content of , making it a tetraquark candidate. It has the spin-parity quantum numbers J P = 1+. The particle joins the X(3872), Zc(3900) The Zc(3900) is a hadron, a type of subatomic particle made of quarks, believed to be the first tetraquark that has been observed experimentally. The discovery was made in 2013 by two independent research groups: one using the BES III detector a ... and Y(4140) as exotic hadron candidates observed by multiple experiments, although it is the first to be confirmed as a resonance. See also * XYZ particle References External links Major harvest of four-leaf clover
Mesons 2014 in science Subatomic particles with spin 1 {{particle-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




X(3872)
The X(3872) is an exotic meson candidate with a mass of 3871.68 MeV/c2 which does not fit into the quark model because of its quantum numbers. It was first discovered in 2003 by the Belle experiment in Japan and later confirmed by several other experimental collaborations. Several theories have been proposed for its nature, such as a mesonic molecule or a diquark-antidiquark pair ( tetraquark). The quantum numbers of X(3872) have been determined by the LHCb experiment at CERN in March 2013. The values for J P C are 1++. The first evidence of X(3872) production in the quark–gluon plasma have been reported by the CMS experiment at CERN in January 2022. See also * Meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ... * XYZ particle * Y(4140) * Z(4430) * Zc(3900) Notes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons. Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles. Higher-energy (more massive) me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D Meson
The D mesons are the lightest particle containing charm quarks. They are often studied to gain knowledge on the weak interaction. The strange D mesons (Ds) were called "F mesons" prior to 1986. Overview The D mesons were discovered in 1976 by the Mark I detector at the Stanford Linear Accelerator Center. Since the D mesons are the lightest mesons containing a single charm quark (or antiquark), they must change the charm (anti)quark into an (anti)quark of another type to decay. Such transitions involve a change of the internal charm quantum number, and can take place only via the weak interaction. In D mesons, the charm quark preferentially changes into a strange quark via an exchange of a W particle, therefore the D meson preferentially decays into kaons () and pions (). List of D mesons ‡ PDG reports the resonance width ~\left(\Gamma\right)~. Here the conversion \; \tau = \frac \; is given instead. – oscillations In 2021 it wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind quarks together, forming hadrons such as protons and neutrons. Gluons are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Gluons themselves carry the color charge of the strong interaction. This is unlike the photon, which mediates the electromagnetic interaction but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than quantum electrodynamics (QED). Properties The gluon is a vector boson, which means, like the photon, it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them "quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]