Xylose Metabolism
   HOME
*



picture info

Xylose Metabolism
D-Xylose is a five-carbon aldose (pentose, monosaccharide) that can be catabolized or metabolized into useful products by a variety of organisms. There are at least four different pathways for the catabolism of D-xylose: An oxido-reductase pathway is present in eukaryotic microorganisms. Prokaryotes typically use an isomerase pathway, and two oxidative pathways, called Weimberg and Dahms pathways respectively, are also present in prokaryotic microorganisms. Pathways The oxido-reductase pathway This pathway is also called the “Xylose Reductase-Xylitol Dehydrogenase” or XR-XDH pathway. Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the first two enzymes in this pathway. XR is reducing D-xylose to xylitol using NADH or NADPH. Xylitol is then oxidized to D-xylulose by XDH, using the cofactor NAD. In the last step D-xylulose is phosphorylated by an ATP utilising kinase, XK, to result in D-xylulose-5-phosphate which is an intermediate of the pentose phosphate pathw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Xylose
Xylose ( grc, ξύλον, , "wood") is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is derived from hemicellulose, one of the main constituents of biomass. Like most sugars, it can adopt several structures depending on conditions. With its free aldehyde group, it is a reducing sugar. Structure The acyclic form of xylose has chemical formula . The cyclic hemiacetal isomers are more prevalent in solution and are of two types: the pyranoses, which feature six-membered rings, and the furanoses, which feature five-membered rings (with a pendant group). Each of these rings is subject to further isomerism, depending on the relative orientation of the anomeric hydroxy group. The dextrorotary form, -xylose, is the one that usually occurs endogenously in living things. A levorotary form, -xylose, can be synthesize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transaldolase
Transaldolase is an enzyme () of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the ''TALDO1'' gene. The following chemical reaction is catalyzed by transaldolase: : sedoheptulose 7-phosphate + glyceraldehyde 3-phosphate \rightleftharpoons erythrose 4-phosphate + fructose 6-phosphate Clinical significance The pentose phosphate pathway has two metabolic functions: (1) generation of nicotinamide adenine dinucleotide phosphate (reduced NADPH), for reductive biosynthesis, and (2) formation of ribose, which is an essential component of ATP, DNA, and RNA. Transaldolase links the pentose phosphate pathway to glycolysis. In patients with deficiency of transaldolase, there's an accumulation of erythritol (from erythrose 4-phosphate), D-arabitol, and ribitol. The deletion in 3 base pairs in the ''TALDO1'' gene results in the absence of serine at position 171 of the transaldolase protein, which is part of a highly conserved region, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ethanol
Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a hydroxyl group). Ethanol is a Volatility (chemistry), volatile, Combustibility and flammability, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive recreational drug, the active ingredient in alcoholic drinks. Ethanol is naturally produced by the fermentation process of Carbohydrate, sugars by yeasts or via Petrochemistry, petrochemical processes such as ethylene hydration. It has medical applications as an antiseptic and disinfectant. It is used as a chemical solvent and in the Chemical synthesis, synthesis of organic compounds, and as a Alcohol fuel, fuel source. Ethanol also can be dehydrated to make ethylene, an important chemical feedstock. As of 2006, world produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glucose-6-phosphate Dehydrogenase
Glucose-6-phosphate dehydrogenase (G6PD or G6PDH) () is a cytosolic enzyme that catalyzes the chemical reaction : D-glucose 6-phosphate + NADP+ + H2O 6-phospho-D-glucono-1,5-lactone + NADPH + H+ This enzyme participates in the pentose phosphate pathway (see image), a metabolic pathway that supplies reducing energy to cells (such as erythrocytes) by maintaining the level of the co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). The NADPH in turn maintains the level of glutathione in these cells that helps protect the red blood cells against oxidative damage from compounds like hydrogen peroxide. Of greater quantitative importance is the production of NADPH for tissues involved in biosynthesis of fatty acids or isoprenoids, such as the liver, mammary glands, adipose tissue, and the adrenal glands. G6PD reduces NADP+ to NADPH while oxidizing glucose-6-phosphate. Glucose-6-phosphate dehydrogenase is also an enzyme in the Entner–Doudoroff pathway, a type of glycolysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phosphogluconate Dehydrogenase
6-Phosphogluconate dehydrogenase (6PGD) is an enzyme in the pentose phosphate pathway. It forms ribulose 5-phosphate from 6-phosphogluconate: :6-phospho-D-gluconate + NAD(P)+ \rightleftharpoons D-Ribulose 5-phosphate + CO2 + NAD(P)H + H+ It is an oxidative carboxylase that catalyses the decarboxylating reduction of 6-phosphogluconate into ribulose 5-phosphate in the presence of NADP. This reaction is a component of the hexose mono-phosphate shunt and pentose phosphate pathways (PPP). Prokaryotic and eukaryotic 6PGD are proteins of about 470 amino acids whose sequences are highly conserved. The protein is a homodimer in which the monomers act independently: each contains a large, mainly alpha-helical domain and a smaller beta-alpha-beta domain, containing a mixed parallel and anti-parallel 6-stranded beta sheet. NADP is bound in a cleft in the small domain, the substrate binding in an adjacent pocket. Biotechnological significance Recently, 6PGD was demonstrated to cata ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ethanol Fermentation
Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Because yeasts perform this conversion in the absence of oxygen, alcoholic fermentation is considered an anaerobic process. It also takes place in some species of fish (including goldfish and carp) where (along with lactic acid fermentation) it provides energy when oxygen is scarce. Ethanol fermentation is the basis for alcoholic beverages, ethanol fuel and bread dough rising. Biochemical process of fermentation of sucrose The chemical equations below summarize the fermentation of sucrose (C12H22O11) into ethanol (C2H5OH). Alcoholic fermentation converts one mole of glucose into two moles of ethanol and two moles of carbon dioxide, producing two moles of ATP in the process. :C6H12O6 → 2 C2H5OH + 2 CO2 Sucrose is a sugar composed of a glucose linked to a fru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface. Terminology The word ''flux'' comes from Latin: ''fluxus'' means "flow", and ''fluere'' is "to flow". As ''fluxion'', this term was introduced into differential calculus by Isaac Newton. The concept of heat flux was a key contribution of Joseph Fourier, in the analysis of heat transfer phenomena. His seminal treatise ''Théorie analytique de la chaleur'' (''The Analytical Theory of Heat''), defines ''fluxion'' as a central quantity and proceeds to derive the now well-known express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Piromyces
''Piromyces'' is a genus of fungi in the family Neocallimastigaceae. ''Piromyces sp.'' E2 physiology and genome Piromyces sp. E2 is an eukaryotic species belonging to the phylum Chytridiomycota, which comprises organisms that possess flagellated zoospores, making them unique among the fungi. These obligate anaerobic chytrid fungi lack mitochondria, possessing instead hydrogenosomes (hydrogen- and ATP-producing organelles), representing a unique order (the Neocallismasticales) within the chytrids. These anaerobic symbionts play a key role in the herbivore digestive tract by providing hydrogen for the bacterial species living in the herbivore gut, but also by aiding with the digestion of plant cell wall material, converting cellulose to glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D-xylulose Reductase
In enzymology, a D-xylulose reductase () is an enzyme that catalyzes the chemical reaction :xylitol + NAD+ \rightleftharpoons D-xylulose + NADH + H+ Thus, the two substrates of this enzyme are xylitol and NAD+, whereas its 3 products are D-xylulose, NADH, and H+. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is xylitol:NAD+ 2-oxidoreductase (D-xylulose-forming). Other names in common use include NAD+-dependent xylitol dehydrogenase, xylitol dehydrogenase, erythritol dehydrogenase, 2,3-cis-polyol(DPN) dehydrogenase (C3-5), pentitol-DPN dehydrogenase, and xylitol-2-dehydrogenase. This enzyme participates in pentose and glucuronate interconversions. Structural studies As of late 2007, only one structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D-xylose Reductase
D-xylose reductase (, ''XylR'', ''XyrA'', ''msXR'', ''dsXR'', ''monospecific xylose reductase'', ''dual specific xylose reductase'', ''NAD(P)H-dependent xylose reductase'', ''xylose reductase'') is an enzyme with systematic name ''xylitol:NAD(P)+ oxidoreductase''. This enzyme catalyses the following chemical reaction : xylitol + NAD(P)+ \rightleftharpoons D-xylose Xylose ( grc, ξύλον, , "wood") is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional gro ... + NAD(P)H + H+ Xylose reductase catalyses the initial reaction in the xylose utilization pathway, the NAD(P)H dependent reduction of xylose to xylitol. References External links * EC 1.1.1 {{Enzyme-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Saccharomyces Cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular biology, molecular and cell biology, much like ''Escherichia coli'' as the model bacteria, bacterium. It is the microorganism behind the most common type of fermentation (biochemistry), fermentation. ''S. cerevisiae'' cells are round to ovoid, 5–10 micrometre, μm in diameter. It reproduces by budding. Many proteins important in human biology were first discovered by studying their Homology (biology), homologs in yeast; these proteins include cell cycle proteins, signaling proteins, and protein-processing enzymes. ''S. cerevisiae'' is currently the only yeast cell known to have Berkeley body, Berkeley bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]