HOME
*





Xenos (graphics Chip)
The Xenos is a custom graphics processing unit (GPU) designed by ATI (now taken over by AMD), used in the Xbox 360 video game console developed and produced for Microsoft. Developed under the codename "C1", it is in many ways related to the R520 architecture and therefore very similar to an ATI Radeon X1800 XT series of PC graphics cards as far as features and performance are concerned. However, the Xenos introduced new design ideas that were later adopted in the TeraScale microarchitecture, such as the unified shader architecture. The package contains two separate dies, the GPU and an eDRAM (manufactured by NEC), featuring a total of 337 million transistors. Specifications The chip is based on TeraScale microarchitecture, the shader units are organized in three SIMD groups with 16 processors per group, for a total of 48 processors. Each of these processors is composed of a 5-wide vector unit (total 5 FP32 ALUs), resulting in 240 units, that can serially execute up to two i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


90 Nm Process
The 90  nm process refers to the level of MOSFET (CMOS) fabrication process technology that was commercialized by the 2003–2005 timeframe, by leading semiconductor companies like Toshiba, Sony, Samsung, IBM, Intel, Fujitsu, TSMC, Elpida, AMD, Infineon, Texas Instruments and Micron Technology. The origin of the 90 nm value is historical, it reflects a trend of 70% scaling every 2–3 years. The naming is formally determined by the International Technology Roadmap for Semiconductors (ITRS). The 193 nm wavelength was introduced by many (but not all) companies for lithography of critical layers mainly during the 90 nm node. Yield issues associated with this transition (due to the use of new photoresists) were reflected in the high costs associated with this transition. Even more significantly, the 300 mm wafer size became mainstream at the 90 nm node. The previous wafer size was 200 mm diameter. History A 90nm silicon MOSFET was fabricated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fillrate
In computer graphics, a video card's pixel fillrate refers to the number of pixels that can be rendered on the screen and written to video memory in one second. Pixel fillrates are given in megapixels per second or in gigapixels per second (in the case of newer cards), and are obtained by multiplying the number of render output units (ROPs) by the clock frequency of the graphics processing unit (GPU) of a video card. A similar concept, texture fillrate, refers to the number of texture map elements ( texels) the GPU can map to pixels in one second. Texture fillrate is obtained by multiplying the number of texture mapping units (TMUs) by the clock frequency of the GPU. Texture fillrates are given in mega or gigatexels per second. However, there is no full agreement on how to calculate and report fillrates. Another possible method is to multiply the number of pixel pipelines by the GPU's clock frequency. The results of these multiplications correspond to a theoretical number. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GFLOPS
In computing, floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second. Floating-point arithmetic Floating-point arithmetic is needed for very large or very small real numbers, or computations that require a large dynamic range. Floating-point representation is similar to scientific notation, except everything is carried out in base two, rather than base ten. The encoding scheme stores the sign, the exponent (in base two for Cray and VAX, base two or ten for IEEE floating point formats, and base 16 for IBM Floating Point Architecture) and the significand (number after the radix point). While several similar formats are in use, the most common is ANSI/IEEE Std. 754-1985. This standard defines the format for 32-bit numbers called ''single precision'', as well as 64-b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polygon (computer Graphics)
Polygons are used in computer graphics to compose images that are three-dimensional in appearance. Usually (but not always) triangular, polygons arise when an object's surface is modeled, vertices are selected, and the object is rendered in a wire frame model. This is quicker to display than a shaded model; thus the polygons are a stage in computer animation. The ''polygon count'' refers to the number of polygons being rendered per frame. Beginning with the fifth generation of video game consoles, the use of polygons became more common, and with each succeeding generation, polygonal models became increasingly complex. Competing methods for rendering polygons that avoid seams * Point **Floating Point ** Fixed-Point **Polygon **because of rounding, every scanline has its own direction in space and may show its front or back side to the viewer. *Fraction (mathematics) **Bresenham's line algorithm **Polygons have to be split into triangles **The whole triangle shows the same sid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point (geometry), point where two or more curves, line (geometry), lines, or edge (geometry), edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedron, polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a vertex is called "convex set, convex" if the internal an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color ( hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unified Shader Model
In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities. They can all read textures and buffers, and they use instruction sets that are almost identical. History Earlier GPUs generally included two types of shader hardware, with the ''vertex shaders'' having considerably more instructions than the simpler ''pixel shaders''. This lowered the cost of implementation of the GPU as a whole, and allowed more shaders in total on a single unit. This was at the cost of making the system less flexible, and sometimes leaving one set of shaders idle if the workload used one more than the other. As improvements in fabrication continued, this distinction became less useful. ATI Technologies introduced a unified architecture on the hardware they developed f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating Point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Xenon (processor)
Microsoft XCPU, codenamed Xenon, is a CPU used in the Xbox 360 game console, to be used with ATI's Xenos graphics chip. The processor was developed by Microsoft and IBM under the IBM chip program codenamed "Waternoose", which was named after the ''Monsters, Inc.'' character Henry J. Waternoose III. The development program was originally announced on November 3, 2003. The processor is based on IBM PowerPC instruction set architecture. It consists of three independent processor cores on a single die. These cores are slightly modified versions of the PPE in the Cell processor used on the PlayStation 3. Each core has two symmetric hardware threads ( SMT), for a total of six hardware threads available to games. Each individual core also includes 32 KB of L1 instruction cache and 32 KB of L1 data cache. The XCPU processors were manufactured at IBM's East Fishkill, New York fabrication plant and Chartered Semiconductor Manufacturing (now part of GlobalFoundries) in Singapore. C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GlobalFoundries
GlobalFoundries Inc. (GF or GloFo) is a multinational semiconductor contract manufacturing and design company incorporated in the Cayman Islands and headquartered in Malta, New York. Created by the divestiture of the manufacturing arm of AMD, the company was privately owned by Mubadala Investment Company, the sovereign wealth fund of the United Arab Emirates, until an initial public offering (IPO) in October 2021. The company manufactures chips designed for markets such as mobility, automotive, computing and wired connectivity, consumer internet of things (IoT) and industrial. As of 2021, GlobalFoundries is the fourth-largest semiconductor manufacturer; it produces chips for more than 7% of the $86 billion semiconductor manufacturing services industry. It is the only one with operations in Singapore, the European Union, and the United States: one 200 mm and one 300 mm wafer fabrication plant in Singapore; one 300 mm plant in Dresden, Germany; one 200 mm plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]