X-ray Interferometer
An X-ray interferometer is analogous to a neutron interferometer. It has been suggested that it may offer the very highest spatial resolution in astronomy, though the technology is unproven as of 2008. One technique is triple Laue interferometry (LLL interferometry). See also *High energy X-rays High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography (and well into gamma-ray energies over 120 k ... References X-Ray and Neutron InterferometryAuthor: Ulrich Bonse at uni-dortmund.de, 10 February 2005 Interferometers {{tech-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutron Interferometer
In physics, a neutron interferometer is an interferometer capable of diffracting neutrons, allowing the wave-like nature of neutrons, and other related phenomena, to be explored. Interferometry Interferometry inherently depends on the wave nature of the object. As pointed out by de Broglie in his PhD thesis, particles, including neutrons, can behave like waves (the so-called wave–particle duality, now explained in the general framework of quantum mechanics). The wave functions of the individual interferometer paths are created and recombined coherently which needs the application of dynamical theory of diffraction. Neutron interferometers are the counterpart of X-ray interferometers and are used to study quantities or benefits related to thermal neutron radiation. Applications Neutron interferometers are used to determine minute quantum-mechanical effects on the neutron wavefunction, such as studies of the Aharonov–Bohm effect, gravity acting on an elementary particle, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomy
Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest include planets, natural satellite, moons, stars, nebulae, galaxy, galaxies, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond atmosphere of Earth, Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Babylonian astronomy, Babylonians, Greek astronomy, Greeks, Indian astronomy, Indians, Egyptian astronomy, Egyptians, Chinese astronomy, Chinese, Maya civilization, Maya, and many anc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triple Laue Interferometry
Triple is used in several contexts to mean "threefold" or a "treble": Sports * Triple (baseball), a three-base hit * A basketball three-point field goal * A figure skating jump with three rotations * In bowling terms, three strikes in a row * In cycling, a crankset with three chainrings Places * Triple Islands, an uninhabited island group in Nunavut, Canada * Triple Island, British Columbia, Canada * Triple Falls (other), four waterfalls in the United States & Canada * Triple Glaciers, in Grand Teton National Park, Wyoming * Triple Crossing, Richmond, Virginia, believed to be the only place in North America where three Class I railroads cross * Triple Bridge, a stone arch bridge in Ljubljana, Slovenia Transportation * Kawasaki triple, a Japanese motorcycle produced between 1969 and 1980 * Triumph Triple, a motorcycle engine from Triumph Motorcycles Ltd * A straight-three engine * A semi-truck with three trailers Science and technology * Triple (mathematics) (3-t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High Energy X-rays
High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography (and well into gamma-ray energies over 120 keV). They are produced at modern synchrotron radiation sources such as the beamline ID15 at the European Synchrotron Radiation Facility (ESRF). The main benefit is the deep penetration into matter which makes them a probe for thick samples in physics and materials science and permits an in-air sample environment and operation. Scattering angles are small and diffraction directed forward allows for simple detector setups. High energy (megavolt) X-rays are also used in cancer therapy, using beams generated by linear accelerators to suppress tumors.Graham A. Colditz, '' The SAGE Encyclopedia of Cancer and Society'', SAGE Publications, 2015, page 1329 Advantages High-energy X-rays (HEX-rays) between 100 and 300 keV bear unique adva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |