Wadge Hierarchy
   HOME
*





Wadge Hierarchy
In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge. Wadge degrees Suppose A and B are subsets of Baire space ωω. Then A is Wadge reducible to B or A ≤W B if there is a continuous function f on ωω with A = f^ /math>. The Wadge order is the preorder or quasiorder on the subsets of Baire space. Equivalence classes of sets under this preorder are called Wadge degrees, the degree of a set A is denoted by A.html" ;"title="math>A">math>Asub>W. The set of Wadge degrees ordered by the Wadge order is called the Wadge hierarchy. Properties of Wadge degrees include their consistency with measures of complexity stated in terms of definability. For example, if A ≤W B and B is a countable intersection of open sets, then so is A. The same works for all levels of the Borel hierarchy and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointclass
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of ''definability property''; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.) Pointclasses find application in formulating many important principles and theorems from set theory and real analysis. Strong set-theoretic principles may be stated in terms of the determinacy of various pointclasses, which in turn implies that sets in those pointclasses (or sometimes larger ones) have regularity properties such as Lebesgue measurability (and indeed universal measurability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofinality
In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least ordinal ''x'' such that there is a function from ''x'' to ''A'' with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. Examples * The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Ordinal
In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β 0, are limits of limits, etc. Properties The classes of successor ordinals and limit ordinals (of various cofinalities) as well as zero exhaust the entire class of ordinals, so these cases are often used in proofs by transfinite induction or definitions by transfinite recursion. Limit ordinals represent a sort of "turning point" in such procedures, in which one must use limiting operations such as taking the union over all preceding ordinals. In principle, one could do anything at limit ordinals, but taking the union is continuous in the order topology and this is usually desirable. If we use the von Neumann cardinal assignment, every infinite cardinal number is also a limit ordinal (and this is a fitting obs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Successor Ordinal
In set theory, the successor of an ordinal number ''α'' is the smallest ordinal number greater than ''α''. An ordinal number that is a successor is called a successor ordinal. Properties Every ordinal other than 0 is either a successor ordinal or a limit ordinal.. In Von Neumann's model Using von Neumann's ordinal numbers (the standard model of the ordinals used in set theory), the successor ''S''(''α'') of an ordinal number ''α'' is given by the formula :S(\alpha) = \alpha \cup \. Since the ordering on the ordinal numbers is given by ''α'' < ''β'' if and only if ''α'' âˆˆ ''β'', it is immediate that there is no ordinal number between α and ''S''(''α''), and it is also clear that ''α'' < ''S''(''α'').


Ordinal addition

The successor operation can be used to define r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Even Ordinal
In mathematics, even and odd ordinals extend the concept of parity from the natural numbers to the ordinal numbers. They are useful in some transfinite induction proofs. The literature contains a few equivalent definitions of the parity of an ordinal α: *Every limit ordinal (including 0) is even. The successor of an even ordinal is odd, and vice versa. *Let α = λ + ''n'', where λ is a limit ordinal and ''n'' is a natural number. The parity of α is the parity of ''n''. *Let ''n'' be the finite term of the Cantor normal form of α. The parity of α is the parity of ''n''. *Let α = ωβ + ''n'', where ''n'' is a natural number. The parity of α is the parity of ''n''. *If α = 2β, then α is even. Otherwise α = 2β + 1 and α is odd. Unlike the case of even integers, one cannot go on to characterize even ordinals as ordinal numbers of the form Ordinal multiplication is not commutative, so in general In fact, the even ordinal cannot be expressed as β + β, and the ordinal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (mathematics)
In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest subset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set equipped with one or several methods for producing elements of from other elements of . Operations and (partial) multivariate function are examples of such methods. If is a topological space, the limit of a sequence of element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Veblen Function
In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α. These functions are all normal.


The Veblen hierarchy

In the special case when φ0(α)=ωα this family of functions is known as the Veblen hierarchy. The function φ1 is the same as the ε function: φ1(α)= εα. If \alpha < \beta \,, then \varphi_(\varphi_(\gamma)) = \varphi_(\gamma).M. Rathjen

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Θ (set Theory)
In set theory, Θ (pronounced like the letter theta) is the least nonzero ordinal α such that there is no surjection from the reals onto α. If the axiom of choice (AC) holds (or even if the reals can be wellordered), then Θ is simply (2^)^+, the cardinal successor of the cardinality of the continuum. However, Θ is often studied in contexts where the axiom of choice fails, such as models of the axiom of determinacy. Θ is also the supremum of the lengths of all prewellorderings of the reals. Proof of existence It may not be obvious that it can be proven, without using AC, that there even exists a nonzero ordinal onto which there is no surjection from the reals (if there is such an ordinal, then there must be a least one because the ordinals are wellordered). However, suppose there were no such ordinal. Then to every ordinal α we could associate the set of all prewellorderings of the reals having length α. This would give an injection from the class of all ordinal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well Founded
In mathematics, a binary relation ''R'' is called well-founded (or wellfounded) on a class ''X'' if every non-empty subset ''S'' âŠ† ''X'' has a minimal element with respect to ''R'', that is, an element ''m'' not related by ''s R m'' (for instance, "''s'' is not smaller than ''m''") for any ''s'' âˆˆ ''S''. In other words, a relation is well founded if :(\forall S \subseteq X)\; \neq \emptyset \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that ''R'' is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, which can be proved when there is no infinite sequence ''x''0, ''x''1, ''x''2, ... of elements of ''X'' such that ''x''''n''+1 ''R'' ''x''n for every natural number ''n''. In order theory, a partial order is called well-fou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Donald A
Donald is a masculine given name derived from the Gaelic name ''Dòmhnall''.. This comes from the Proto-Celtic *''Dumno-ualos'' ("world-ruler" or "world-wielder"). The final -''d'' in ''Donald'' is partly derived from a misinterpretation of the Gaelic pronunciation by English speakers, and partly associated with the spelling of similar-sounding Germanic names, such as ''Ronald''. A short form of ''Donald'' is ''Don''. Pet forms of ''Donald'' include ''Donnie'' and ''Donny''. The feminine given name ''Donella'' is derived from ''Donald''. ''Donald'' has cognates in other Celtic languages: Modern Irish ''Dónal'' (anglicised as ''Donal'' and ''Donall'');. Scottish Gaelic ''Dòmhnall'', ''Domhnull'' and ''Dòmhnull''; Welsh '' Dyfnwal'' and Cumbric ''Dumnagual''. Although the feminine given name ''Donna'' is sometimes used as a feminine form of ''Donald'', the names are not etymologically related. Variations Kings and noblemen Domnall or Domhnall is the name of many ancie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. We have the following chain of strict inclus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]