WISP2
   HOME
*





WISP2
WNT1-inducible-signaling pathway protein 2, or WISP-2 (also named CCN5) is a matricellular protein that in humans is encoded by the ''WISP2'' gene. Function The CCN family of proteins regulates diverse cellular functions, including cell adhesion, migration, proliferation, differentiation. Structure WISP-2 is a member of the CCN family (CCN intercellular signaling protein) of secreted, extracellular matrix (ECM)-associated signaling matricellular proteins. The CCN acronym is derived from the first three members of the family identified, namely CYR61 (CCN1), CTGF (connective tissue growth factor, or CCN2), and NOV. These proteins, together with WISP1/CCN4, WISP2 (CCN5, this gene), and WISP3 (CCN6) comprise the six-member CCN family in vertebrates. CCN proteins characteristically contain an N-terminal secretory signal peptide followed by four structurally distinct domains with homologies to insulin-like growth factor binding protein (IGFBP), von Willebrand type C repeats ( v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CCN Intercellular Signaling Protein
CCN proteins are a family of extracellular matrix (ECM)-associated proteins involved in intercellular signaling. Due to their dynamic role within the ECM they are considered matricellular proteins. Background The acronym CCN is derived from the first three members of the family discovered, namely CYR61 (cysteine-rich angiogenic protein 61 or CCN1), CTGF (connective tissue growth factor or CCN2), and NOV (nephroblastoma overexpressed or CCN3). Together with three Wnt-induced secreted proteins, they comprise the CCN family of matricellular proteins. These proteins have now been renamed CCN1-6 by international consensus. Members of the CCN protein family are characterized by having four conserved cysteine-rich domains, which include the insulin-like growth factor-binding domain (IGFBP), the Von Willebrand factor type C domain (VWC), the thrombospondin type 1 repeat (TSR), and a C-terminal domain (CT) with a cysteine knot motif. CCN proteins have been shown to play important roles in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


WISP3
WNT1-inducible-signaling pathway protein 3 (WISP3, also named CCN6) is a matricellular protein that in humans is encoded by the ''WISP3'' gene. Structure It is a member of the CCN family (CCN intercellular signaling protein) of secreted, extracellular matrix (ECM)-associated signaling matricellular proteins. The CCN acronym is derived from the first three members of the family identified, namely CYR61 (cysteine-rich angiogenic inducer 61, or CCN1), CTGF (connective tissue growth factor, or CCN2), and NOV (nephroblastoma overexpressed, or CCN3). These proteins, together with WISP1 (CCN4), and WISP2 (CCN5) comprise the six-member CCN family in vertebrates. CCN proteins characteristically contain an N-terminal secretory signal peptide followed by four structurally distinct domains with homologies to insulin-like growth factor binding protein (IGFBP), von Willebrand type C repeats ( vWC), thrombospondin type 1 repeat (TSR), and a cysteine knot motif within the C-terminal (CT) domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thrombospondin
Thrombospondins (TSPs) are a family of secreted glycoproteins with antiangiogenic functions. Due to their dynamic role within the extracellular matrix they are considered matricellular proteins. The first member of the family, thrombospondin 1 (THBS1), was discovered in 1971 by Nancy L. Baenziger. Types The thrombospondins are a family of multifunctional proteins. The family consists of thrombospondins 1-5 and can be divided into 2 subgroups: A, which contains TSP-1 and TSP-2, and B, which contains TSP-3, TSP-4 and TSP-5 (also designated cartilage oligomeric protein or COMP). TSP-1 and TSP-2 are homotrimers, consisting of three identical subunits, whereas TSP-3, TSP-4 and TSP-5 are homopentamers. TSP-1 and TSP-2 are produced by immature astrocytes during brain development, which promotes the development of new synapses. Thrombospondin 1 Thrombospondin 1 (TSP-1) is encoded by THBS1. It was first isolated from platelets that had been stimulated with thrombin, and so was design ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CYR61
Cysteine-rich angiogenic inducer 61 (CYR61) or CCN family member 1 (CCN1), is a matricellular protein that in humans is encoded by the ''CYR61'' gene. CYR61 is a secreted, extracellular matrix (ECM)-associated signaling protein of the CCN family (CCN intercellular signaling protein). CYR61 is capable of regulating a broad range of cellular activities, including cell adhesion, migration, proliferation, differentiation, apoptosis, and senescence through interaction with cell surface integrin receptors and heparan sulfate proteoglycans. During embryonic development, CYR61 is critical for cardiac septal morphogenesis, blood vessel formation in placenta, and vascular integrity. In adulthood CYR61 plays important roles in inflammation and tissue repair, and is associated with diseases related to chronic inflammation, including rheumatoid arthritis, atherosclerosis, diabetes-related nephropathy and retinopathy, and many different forms of cancers. CCN protein family CYR61 was first id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Von Willebrand Factor Type C Domain
Von Willebrand factor, type C (VWFC or VWC)is a protein domain is found in various blood plasma proteins: complement factors B, C2, CR3 and CR4; the integrins (I-domains); collagen types VI, VII, XII and XIV; and other extracellular proteins. Function Although the majority of VWA-containing proteins are extracellular, the most ancient ones present in all eukaryotes are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport and the proteasome. A common feature appears to be involvement in multiprotein complexes. Proteins that incorporate vWF domains participate in numerous biological events (e.g. cell adhesion, migration, homing, pattern formation, and signal transduction), involving interaction with a large array of ligands. Mutation effects A number of human diseases arise from mutations in VWA domains. The domain is named after the von Willebrand factor (VWF) type C repeat which is found in multidomain protein/mult ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NOV (gene)
NOV (nephroblastoma overexpressed) also known as CCN3 is a matricellular protein that in humans is encoded by the ''NOV'' gene. CCN family NOV is a member of the CCN family of secreted, extracellular matrix (ECM)-associated signaling proteins (see also CCN intercellular signaling protein). The CCN acronym is derived from the first three members of the family being identified, namely CYR61 (cysteine-rich angiogenic inducer 61, or CCN1), CTGF (connective tissue growth factor, or CCN2), and NOV. These proteins, together with WISP1 (CCN4), WISP2 (CCN5), and WISP3 (CCN6) comprise the six-member CCN family in vertebrates and have been renamed CCN1-6 in the order of their discovery by international consensus. Structure The human NOV protein contains 357 amino acids with an N-terminal secretory signal peptide followed by four structurally distinct domains with homologies to insulin-like growth factor binding protein (insulin-like growth factor-binding protein, IGFBP), von Willebrand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matricellular Protein
A matricellular protein is a dynamically expressed non-structural protein that is present in the extracellular matrix (ECM). Rather than serving as stable structural elements in the ECM, these proteins are rapidly turned over and have regulatory roles. They characteristically contain binding sites for ECM structural proteins and cell surface receptors, and may sequester and modulate activities of specific growth factors. Examples of matricellular proteins include the CCN family of proteins (also known as CCN intercellular signaling protein), fibulins, osteopontin, periostin, SPARC family members, tenascin(s), and thrombospondins. Many of these proteins have important functions in wound healing and tissue repair. See also * CCN protein References

Matricellular proteins , Extracellular matrix proteins {{Protein-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypertrophy
Hypertrophy is the increase in the volume of an organ or tissue due to the enlargement of its component cells. It is distinguished from hyperplasia, in which the cells remain approximately the same size but increase in number.Updated by Linda J. Vorvick. 8/14/1Hyperplasia/ref> Although hypertrophy and hyperplasia are two distinct processes, they frequently occur together, such as in the case of the hormonally-induced proliferation and enlargement of the cells of the uterus during pregnancy. Eccentric hypertrophy is a type of hypertrophy where the walls and chamber of a hollow organ undergo growth in which the overall size and volume are enlarged. It is applied especially to the left ventricle of heart. Sarcomeres are added in series, as for example in dilated cardiomyopathy (in contrast to hypertrophic cardiomyopathy, a type of concentric hypertrophy, where sarcomeres are added in parallel). Gallery File:*+ * Photographic documentation on sexual education - Hypertrophy of bre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vascular Smooth Muscle
Vascular smooth muscle is the type of smooth muscle that makes up most of the walls of blood vessels. Structure Vascular smooth muscle refers to the particular type of smooth muscle found within, and composing the majority of the wall of blood vessels. Nerve supply Vascular smooth muscle is innervated primarily by the sympathetic nervous system through adrenergic receptors (adrenoceptors). The three types present are: alpha-1, alpha-2 and beta-2 adrenergic receptors, . The main endogenous agonist of these cell receptors is norepinephrine (NE). The adrenergic receptors exert opposite physiologic effects in the vascular smooth muscle under activation: * alpha-1 receptors. Under NE binding alpha-1 receptors cause vasoconstriction ( contraction of the vascular smooth muscle cells decreasing the diameter of the vessels). Thesea receptors are activated in response to shock or low blood pressure as a defensive reaction trying to restore the normal blood pressure. Antagonists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C-terminal
The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is translated from messenger RNA, it is created from N-terminus to C-terminus. The convention for writing peptide sequences is to put the C-terminal end on the right and write the sequence from N- to C-terminus. Chemistry Each amino acid has a carboxyl group and an amine group. Amino acids link to one another to form a chain by a dehydration reaction which joins the amine group of one amino acid to the carboxyl group of the next. Thus polypeptide chains have an end with an unbound carboxyl group, the C-terminus, and an end with an unbound amine group, the N-terminus. Proteins are naturally synthesized starting from the N-terminus and ending at the C-terminus. Function C-terminal retention signals While the N-terminus of a protein often cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cysteine Knot
A cystine knot is a protein structural motif containing three disulfide bridges (formed from pairs of cysteine residues). The sections of polypeptide that occur between two of them form a loop through which a third disulfide bond passes, forming a rotaxane substructure. The cystine knot motif stabilizes protein structure and is conserved in proteins across various species. There are three types of cystine knot, which differ in the topology of the disulfide bonds: * The growth factor cystine knot (GFCK) * inhibitor cystine knot (ICK) common in spider and snail toxins * Cyclic Cystine Knot, or cyclotide The growth factor cystine knot was first observed in the structure of nerve growth factor (NGF), solved by X-ray crystallography and published in 1991 by Tom Blundell in Nature (journal), Nature.; The GFCK is present in four superfamilies. These include nerve growth factor, transforming growth factor beta (TGF-β), platelet-derived growth factor, and glycoprotein hormones including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IGFBP
The insulin-like growth factor-binding protein (IGFBP) serves as a transport protein for insulin-like growth factor 1 (IGF-1). Function Approximately 98% of IGF-1 is always bound to one of six binding proteins (IGF-BP). IGFBP-3, the most abundant protein, accounts for 80% of all IGF binding. IGF-1 binds to IGFBP-3 in a 1:1 molar ratio. IGF-BP also binds to IGF-1 inside the liver, allowing growth hormone to continuously act upon the liver to produce more IGF-1. IGF binding proteins (IGFBPs) are proteins of 24 to 45 kDa. All six IGFBPs share 50% homology with each other and have binding affinities for IGF-I and IGF-II at the same order of magnitude as the ligands have for the IGF-IR. The IGFBPs help to lengthen the half-life of circulating IGFs in all tissues, including the prostate. Individual IGFBPs may act to enhance or attenuate IGF signaling depending on their physiological context (i.e. cell type). Even with these similarities, some characteristics are different: chromoso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]