HOME





Wolstenholme's Theorem
In mathematics, Wolstenholme's theorem states that for a prime number ''p'' ≥ 5, the congruence : \equiv 1 \pmod holds, where the parentheses denote a binomial coefficient. For example, with ''p'' = 7, this says that 1716 is one more than a multiple of 343. The theorem was first proved by Joseph Wolstenholme in 1862. In 1819, Charles Babbage showed the same congruence modulo ''p''2, which holds for ''p'' ≥ 3. An equivalent formulation is the congruence : \equiv \pmod for ''p'' ≥ 5, which is due to Wilhelm Ljunggren (and, in the special case ''b'' = 1, to J. W. L. Glaisher) and is inspired by Lucas's theorem. No known composite numbers satisfy Wolstenholme's theorem and it is conjectured that there are none (see below). A prime that satisfies the congruence modulo ''p''4 is called a Wolstenholme prime (see below). As Wolstenholme himself established, his theorem can also be expressed as a pair of congruences for (generalized) harmonic numbers: :1+++\dots+ \equiv 0 \pmod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a member of a #Related asymptotic notations, family of notations invented by German mathematicians Paul Gustav Heinrich Bachmann, Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for '':wikt:Ordnung#German, Ordnung'', meaning the order of approximation. In computer science, big O notation is used to Computational complexity theory, classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetic function, arithmetical function and a better understood approximation; one well-known exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial And Binomial Topics
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classes Of Prime Numbers
Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently from such group phenomena as "types" or "kinds" * Class (set theory), a collection of sets that can be unambiguously defined by a property that all its members share * Hazard class, a dangerous goods classification * Social class, the hierarchical arrangement of individuals in society, usually defined by wealth and occupation * Working class, can be defined by rank, income or collar Arts, entertainment, and media * "The Class" (song), 1959 Chubby Checker song * Character class in role-playing games and other genres * Class 95 (radio station), a Singaporean radio channel Films * ''Class'' (film), 1983 American film * ''The Class'' (2007 film), 2007 Estonian film * ''The Class'' (2008 film), 2008 film (''Entre les murs'') Telev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Table Of Congruences
In number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ..., a congruence is an equivalence relation on the integers. The following sections list important or interesting prime-related congruences. Table of congruences characterizing special primes Other prime-related congruences There are other prime-related congruences that provide necessary and sufficient conditions on the primality of certain subsequences of the natural numbers. Many of these alternate statements characterizing primality are related to Wilson's theorem, or are restatements of this classical result given in terms of other special variants of generalized factorial functions. For instance, new variants of Wilson's theorem stated in terms of the hyperfactorials, subfactorials, and superfactor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Special Classes Of Prime Numbers
This is a list of articles about prime numbers. A prime number (or ''prime'') is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite. The first 1000 prime numbers The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows. . The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×10. That means 95,676,260,903,887,607 primes (nearly 10), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wall–Sun–Sun Prime
In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known. Definition Let p be a prime number. When each term in the sequence of Fibonacci numbers F_n is reduced modulo p, the result is a periodic sequence. The (minimal) period length of this sequence is called the Pisano period and denoted \pi(p). Since F_0 = 0, it follows that ''p'' divides F_. A prime ''p'' such that ''p''2 divides F_ is called a Wall–Sun–Sun prime. Equivalent definitions If \alpha(m) denotes the rank of apparition modulo m (i.e., \alpha(m) is the smallest positive index such that m divides F_), then a Wall–Sun–Sun prime can be equivalently defined as a prime p such that p^2 divides F_. For a prime ''p'' ≠ 2, 5, the rank of apparition \alpha(p) is known to divide p - \left(\tfrac\right), where the Legendre symbol \textstyle\left(\frac\right) has the values :\left(\frac\right) = \beg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilson Prime
In number theory, a Wilson prime is a prime number p such that p^2 divides (p-1)!+1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p-1)!+1. Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham. The only known Wilson primes are 5, 13, and 563 . Costa et al. write that "the case p=5 is trivial", and credit the observation that 13 is a Wilson prime to . Early work on these numbers included searches by N. G. W. H. Beeger and Emma Lehmer, but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem. If any others exist, they must be greater than 2 × 1013. It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval ,y/math> is about \log\log_x y. Several c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wieferich Prime
In number theory, a Wieferich prime is a prime number ''p'' such that ''p''2 divides , therefore connecting these primes with Fermat's little theorem, which states that every odd prime ''p'' divides . Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians. Since then, connections between Wieferich primes and various other topics in mathematics have been discovered, including other types of numbers and primes, such as Mersenne and Fermat numbers, specific types of pseudoprimes and some types of numbers generalized from the original definition of a Wieferich prime. Over time, those connections discovered have extended to cover more properties of certain prime numbers as well as more general subjects such as number fields and the ''abc'' conjecture. , the only known Wieferich primes are 1093 and 3511 . Equivalent definitions The stronge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilson's Theorem
In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of modular arithmetic), the factorial (n - 1)! = 1 \times 2 \times 3 \times \cdots \times (n - 1) satisfies :(n-1)!\ \equiv\; -1 \pmod n exactly when ''n'' is a prime number. In other words, any integer ''n'' > 1 is a prime number if, and only if, (''n'' − 1)! + 1 is divisible by ''n''. History The theorem was first stated by Ibn al-Haytham . Edward Waring announced the theorem in 1770 without proving it, crediting his student John Wilson for the discovery. Lagrange gave the first proof in 1771. There is evidence that Leibniz was also aware of the result a century earlier, but never published it. Example For each of the values of ''n'' from 2 to 30, the following table shows the number (''n'' −&thinsp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Little Theorem
In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as a^p \equiv a \pmod p. For example, if and , then , and is an integer multiple of . If is not divisible by , that is, if is coprime to , then Fermat's little theorem is equivalent to the statement that is an integer multiple of , or in symbols: a^ \equiv 1 \pmod p. For example, if and , then , and is a multiple of . Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem.. History Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy. His formulation is equivalent to the following ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of ''m''-th powers of the first ''n'' positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function. The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by B^_n and B^_n; they differ only for , where B^_1=-1/2 and B^_1=+1/2. For every odd , . For every even , is negative if is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials B_n(x), with B^_n=B_n(0) and B^+_n=B_n(1). The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]