Weyl's Theorem (other)
   HOME
*





Weyl's Theorem (other)
In mathematics, Weyl's theorem or Weyl's lemma might refer to one of a number of results of Hermann Weyl. These include * the Peter–Weyl theorem * Weyl's theorem on complete reducibility, results originally derived from the unitarian trick on representation theory of semisimple groups and semisimple Lie algebras * Weyl's theorem on eigenvalues * Weyl's criterion for equidistribution (Weyl's criterion) * Weyl's lemma on the hypoellipticity of the Laplace equation * results estimating Weyl sums in the theory of exponential sums * Weyl's inequality * Weyl's criterion In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be equidistributed, or uniformly distributed, if the proportion of terms falling in a subinterval is proportional to the length of that subinterval. Such sequences ...
for a number to be in the essential spectrum of an operator {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Weyl
Hermann Klaus Hugo Weyl, (; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is associated with the University of Göttingen tradition of mathematics, represented by Carl Friedrich Gauss, David Hilbert and Hermann Minkowski. His research has had major significance for theoretical physics as well as purely mathematical disciplines such as number theory. He was one of the most influential mathematicians of the twentieth century, and an important member of the Institute for Advanced Study during its early years. Weyl contributed to an exceptionally wide range of mathematical fields, including works on space, time, matter, philosophy, logic, symmetry and the history of mathematics. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. Freeman Dyson wrote that Weyl alone bore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter–Weyl Theorem
In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group ''G'' . The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. Let ''G'' be a compact group. The theorem has three parts. The first part states that the matrix coefficients of irreducible representations of ''G'' are dense in the space ''C''(''G'') of continuous complex-valued functions on ''G'', and thus also in the space ''L''2(''G'') of square-integrable functions. The second part asserts the complete reducibility of unitary representations of ''G''. The third part then asserts that the regular representation of ''G'' on ''L''2(''G'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl's Theorem On Complete Reducibility
In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let \mathfrak be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over \mathfrak is semisimple as a module (i.e., a direct sum of simple modules.) The enveloping algebra is semisimple Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way. Given a finite-dimensional Lie algebra representation \pi: \mathfrak \to \mathfrak(V), let A \subset \operatorname(V) be the associative subalgebra of the endomorphism algebra of ''V'' generated by \pi(\mathfrak g). The ring ''A'' is called the enveloping algebra of \pi. If \pi is semisimple, then ''A'' is semisimple. (Proof: Since ''A'' is a finite-dimensional algebra, it is an Artini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitarian Trick
In mathematics, the unitarian trick is a device in the representation theory of Lie groups, introduced by for the special linear group and by Hermann Weyl for general semisimple groups. It applies to show that the representation theory of some group ''G'' is in a qualitative way controlled by that of some other compact group ''K''. An important example is that in which ''G'' is the complex general linear group, and ''K'' the unitary group acting on vectors of the same size. From the fact that the representations of ''K'' are completely reducible, the same is concluded for those of ''G'', at least in finite dimensions. The relationship between ''G'' and ''K'' that drives this connection is traditionally expressed in the terms that the Lie algebra of ''K'' is a real form of that of ''G''. In the theory of algebraic groups, the relationship can also be put that ''K'' is a dense subset of ''G'', for the Zariski topology. The trick works for reductive Lie groups, of which an importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group ''GL''(''n'') of invertible matrices, the special orthogonal group ''SO''(''n''), and the symplectic group ''Sp''(2''n''). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive. Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the real numbers R or a number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weyl's Inequality
In linear algebra, Weyl's inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed. It can be used to estimate the eigenvalues of a perturbed Hermitian matrix. Weyl's inequality about perturbation Let M=N+R,\,N, and R be ''n''×''n'' Hermitian matrices, with their respective eigenvalues \mu_i,\,\nu_i,\,\rho_i ordered as follows: :M:\quad \mu_1 \ge \cdots \ge \mu_n, :N:\quad\nu_1 \ge \cdots \ge \nu_n, :R:\quad\rho_1 \ge \cdots \ge \rho_n. Then the following inequalities hold: :\nu_i + \rho_n \le \mu_i \le \nu_i + \rho_1,\quad i=1,\dots,n, and, more generally, :\nu_j + \rho_k \le \mu_i \le \nu_r + \rho_s,\quad j+k-n \ge i \ge r+s-1. In particular, if R is positive definite then plugging \rho_n > 0 into the above inequalities leads to :\mu_i > \nu_i \quad \forall i = 1,\dots,n. Note that these eigenvalues can be ordered, because they are real (as eigenvalues of Hermitian matrices). Weyl's inequality between eigenvalues and singular val ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weyl's Criterion For Equidistribution
In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be equidistributed, or uniformly distributed, if the proportion of terms falling in a subinterval is proportional to the length of that subinterval. Such sequences are studied in Diophantine approximation theory and have applications to Monte Carlo integration. Definition A sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ''equidistributed'' on a non-degenerate interval 'a'', ''b''if for every subinterval 'c'', ''d''of 'a'', ''b''we have :\lim_= . (Here, the notation , ∩ 'c'', ''d'' denotes the number of elements, out of the first ''n'' elements of the sequence, that are between ''c'' and ''d''.) For example, if a sequence is equidistributed in , 2 since the interval .5, 0.9occupies 1/5 of the length of the interval , 2 as ''n'' becomes large, the proportion of the first ''n'' members of the sequence which fall between 0.5 and 0.9 must approach 1/5. Lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl's Lemma (Laplace Equation)
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity. Statement of the lemma Let \Omega be an open subset of n-dimensional Euclidean space \mathbb^, and let \Delta denote the usual Laplace operator. Weyl's lemma states that if a locally integrable function u \in L_^(\Omega) is a weak solution of Laplace's equation, in the sense that :\int_\Omega u(x) \, \Delta \varphi (x) \, dx = 0 for every smooth test function \varphi \in C_c^\infty(\Omega) with compact support, then (up to redefinition on a set of measure zero) u \in C^(\Omega) is smooth and satisfies \Delta u = 0 pointwise in \Omega. This result implies the interior regularity of harmonic functions in \Omega, but it does not say anything about their regularity on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypoellipticity
In the theory of partial differential equations, a partial differential operator P defined on an open subset :U \subset^n is called hypoelliptic if for every distribution u defined on an open subset V \subset U such that Pu is C^\infty (smooth), u must also be C^\infty. If this assertion holds with C^\infty replaced by real-analytic, then P is said to be ''analytically hypoelliptic''. Every elliptic operator with C^\infty coefficients is hypoelliptic. In particular, the Laplacian is an example of a hypoelliptic operator (the Laplacian is also analytically hypoelliptic). In addition, the operator for the heat equation (P(u)=u_t - k\,\Delta u\,) :P= \partial_t - k\,\Delta_x\, (where k>0) is hypoelliptic but not elliptic. However, the operator for the wave equation The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]