HOME
*



picture info

Weissenberg Number
The Weissenberg number (Wi) is a dimensionless number used in the study of viscoelastic flows. It is named after Karl Weissenberg. The dimensionless number compares the elastic forces to the viscous forces. It can be variously defined, but it is usually given by the relation of stress relaxation time of the fluid and a specific process time. For instance, in simple steady shear, the Weissenberg number, often abbreviated as Wi or We, is defined as the shear rate \dot times the relaxation time \lambda. Using the Maxwell model and the Oldroyd-B model, the elastic forces can be written as the first Normal force (N1). :\text = \dfrac = \frac = \frac= 2 \dot \lambda.\, Since this number is obtained from scaling the evolution of the stress, it contains choices for the shear or elongation rate, and the length-scale. Therefore the exact definition of all non dimensional numbers should be given as well as the number itself. While Wi is similar to the Deborah number The Deborah number ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dimensionless Number
A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1), ISBN 978-92-822-2272-0. which is not explicitly shown. Dimensionless quantities are widely used in many fields, such as mathematics, physics, chemistry, engineering, and economics. Dimensionless quantities are distinct from quantities that have associated dimensions, such as time (measured in seconds). Dimensionless units are dimensionless values that serve as units of measurement for expressing other quantities, such as radians (rad) or steradians (sr) for plane angles and solid angles, respectively. For example, optical extent is defined as having units of metres multiplied by steradians. History Quantities having dimension one, ''dimensionless quantities'', regularly occur in sciences, and are formally treated within the field of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscoelastic
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103. Background In the nineteenth century, physicists such as Maxwell, Boltzmann, and Kelvin researched and experimented with creep and recovery of glasses, metals, and rubbers. Viscoelasticity was further examined in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karl Weissenberg
Karl Weissenberg (11 June 1893, Vienna – 6 April 1976, The Hague) was an Austrian physicist, notable for his contributions to rheology and crystallography.H. B. Seebohm (1973) Biographical Notes on Karl Weissenberg



Biography

The Weissenberg effect was named after him, as was the Weissenberg number. He invented a Goniometer to study X-ray diffraction of crystals for which he received the Duddell Medal and Prize, Duddell Medal of the Institute of Physics i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stress Relaxation
In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some amount of plastic strain. This should not be confused with creep, which is a constant state of stress with an increasing amount of strain. Since relaxation relieves the state of stress, it has the effect of also relieving the equipment reactions. Thus, relaxation has the same effect as cold springing, except it occurs over a longer period of time. The amount of relaxation which takes place is a function of time, temperature and stress level, thus the actual effect it has on the system is not precisely known, but can be bounded. Stress relaxation describes how polymers relieve stress under constant strain. Because they are viscoelastic, polymers behave in a nonlinear, non-Hookean fashion.Meyers and Chawla. "Mechanical Behavior of Materia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shear Rate
In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by :\dot\gamma = \frac, where: *\dot\gamma is the shear rate, measured in reciprocal seconds; * is the velocity of the moving plate, measured in meters per second; * is the distance between the two parallel plates, measured in meters. Or: : \dot\gamma_ = \frac + \frac. For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s−1, expressed as "reciprocal seconds" or "inverse seconds". The shear rate at the inner wall of a Newtonian fluid flowing within a pipe is :\dot\gamma = \frac, where: *\dot\gamma is the shear rate, measured in reciprocal seconds; * is the linear fluid velocity; * is the inside diameter of the pipe. The lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maxwell Material
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid. Definition The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, as shown in the diagram. In this configuration, under an applied axial stress, the total stress, \sigma_\mathrm and the total strain, \varepsilon_\mathrm can be defined as follows: :\sigma_\mathrm=\sigma_D = \sigma_S :\varepsilon_\mathrm=\varepsilon_D+\varepsilon_S where the subscript D indicates the stress–strain in the damper and the subscript S indicates the stress–strain in the spring. Taking the derivative of strain with respect to time, we obtain: :\frac = \frac + \frac = \frac + \frac \frac where ''E'' is the elastic modulu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oldroyd-B Model
The Oldroyd-B model is a constitutive model used to describe the flow of viscoelastic fluids. This model can be regarded as an extension of the upper-convected Maxwell model and is equivalent to a fluid filled with elastic bead and spring dumbbells. The model is named after its creator James G. Oldroyd. The model can be written as: \mathbf + \lambda_1 \stackrel = 2\eta_0 (\mathbf + \lambda_2 \stackrel) where: * \mathbf is the deviatoric part of the stress tensor; * \lambda_1 is the relaxation time; * \lambda_2 is the retardation time = \frac\lambda_1 ; * \stackrel is the upper-convected time derivative of stress tensor: \stackrel = \frac \mathbf + \mathbf \cdot \nabla \mathbf -( (\nabla \mathbf)^T \cdot \mathbf + \mathbf \cdot (\nabla \mathbf)) ; *\mathbf is the fluid velocity; *\eta_0 is the total viscosity composed of solvent and polymer components, \eta_0= \eta_s + \eta_p ; *\mathbf is the deformation rate tensor or rate of strain tensor, \mathbf = \frac \left boldsymbol\n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deborah Number
The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough. Materials that have low relaxation times flow easily and as such show relatively rapid stress decay. Definition The Deborah number is the ratio of fundamentally different characteristic times. The Deborah number is defined as the ratio of the time it takes for a material to adjust to applied stresses or deformations, and the characteristic time scale of an experiment (or a computer simulation) probing the response of the material: : \mathrm = \frac, where stands for the relaxation time and for the "time of observation", typically taken to be the time scale of the process. The numerator, relaxation time, is the time needed for a reference amount of deformation to occur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dimensionless Numbers Of Fluid Mechanics
A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1), ISBN 978-92-822-2272-0. which is not explicitly shown. Dimensionless quantities are widely used in many fields, such as mathematics, physics, chemistry, engineering, and economics. Dimensionless quantities are distinct from quantities that have associated dimensions, such as time (measured in seconds). Dimensionless units are dimensionless values that serve as units of measurement for expressing other quantities, such as radians (rad) or steradians (sr) for plane angles and solid angles, respectively. For example, optical extent is defined as having units of metres multiplied by steradians. History Quantities having dimension one, ''dimensionless quantities'', regularly occur in sciences, and are formally treated within the field of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and time. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Newtonian Fluids
A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, i.e., constant viscosity independent of stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo. Most commonly, the viscosity (the gradual deformation by shear or tensile stresses) of non-Newtonian fluids is dependent on shear rate or shear rate history. Some non-Newtonian fluids with shear-independent viscosity, however, still exhibit normal stress-differences or other non-Newtonian behavior. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coeffic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]