Weber–Hermite Function
In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation This equation is found when the technique of separation of variables is used on Laplace's equation when expressed in parabolic cylindrical coordinates. The above equation may be brought into two distinct forms (A) and (B) by completing the square and rescaling , called H. F. Weber's equations: and If f(a,z) is a solution, then so are f(a,-z), f(-a,iz)\textf(-a,-iz). If f(a,z)\, is a solution of equation (), then f(-ia,ze^) is a solution of (), and, by symmetry, f(-ia,-ze^), f(ia,-ze^)\textf(ia,ze^) are also solutions of (). Solutions There are independent even and odd solutions of the form (). These are given by (following the notation of Abramowitz and Stegun (1965)): y_1(a;z) = \exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac14; \; \tfrac12\; ; \; \frac\right)\,\,\,\,\,\, (\mathrm) and y_2(a;z) = z\exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac34; \; \tf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabolic Cylindrical Coordinates
In mathematics, parabolic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional parabolic coordinate system in the perpendicular z-direction. Hence, the coordinate surfaces are confocal parabolic cylinders. Parabolic cylindrical coordinates have found many applications, e.g., the potential theory of edges. Basic definition The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by: :\begin x &= \sigma \tau \\ y &= \frac \left( \tau^2 - \sigma^2 \right) \\ z &= z \end The surfaces of constant form confocal parabolic cylinders : 2 y = \frac - \sigma^2 that open towards , whereas the surfaces of constant form confocal parabolic cylinders : 2 y = -\frac + \tau^2 that open in the opposite direction, i.e., towards . The foci of all these parabolic cylinders are located along the line defined by . The radius has a simple formula as well : r = \sqrt = \frac \left( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plot Of The Parabolic Cylinder Function D V(z) With V=5 In The Complex Plane From -2-2i To 2+2i With Colors Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area Land * Plot (land), a piece of land used for building on ** Burial plot, a piece of land a person is buried in * Quadrat, a de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Function
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the List of mathematical functions contains functions that are commonly accepted as special. Tables of special functions Many special functions appear as solutions of differential equations or integrals of elementary functions. Therefore, tables of integrals usually include descriptions of special functions, and tables of special functions include most important integrals; at least, the integral representation of special functions. Because symmetries of differential equations are essential to both physics and mathematics, the theory of special functions is closely related to the theory of Lie groups and Lie algebras, as well as certain topics in mathematical physics. Symbolic co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separation Of Variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation. Ordinary differential equations (ODE) Suppose a differential equation can be written in the form :\frac f(x) = g(x)h(f(x)) which we can write more simply by letting y = f(x): :\frac=g(x)h(y). As long as ''h''(''y'') ≠ 0, we can rearrange terms to obtain: : = g(x) \, dx, so that the two variables ''x'' and ''y'' have been separated. ''dx'' (and ''dy'') can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of ''dx'' as a differential (infinitesimal) is somewhat advanced. Alternative notation Those who dislike Leibniz's notation may prefer to write this as :\frac \frac = g(x), but that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Laplace Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h. This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simplest exa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabolic Cylindrical Coordinates
In mathematics, parabolic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional parabolic coordinate system in the perpendicular z-direction. Hence, the coordinate surfaces are confocal parabolic cylinders. Parabolic cylindrical coordinates have found many applications, e.g., the potential theory of edges. Basic definition The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by: :\begin x &= \sigma \tau \\ y &= \frac \left( \tau^2 - \sigma^2 \right) \\ z &= z \end The surfaces of constant form confocal parabolic cylinders : 2 y = \frac - \sigma^2 that open towards , whereas the surfaces of constant form confocal parabolic cylinders : 2 y = -\frac + \tau^2 that open in the opposite direction, i.e., towards . The foci of all these parabolic cylinders are located along the line defined by . The radius has a simple formula as well : r = \sqrt = \frac \left( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Completing The Square
: In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form :ax^2 + bx + c to the form :a(x-h)^2 + k for some values of ''h'' and ''k''. In other words, completing the square places a perfect square trinomial inside of a quadratic expression. Completing the square is used in * solving quadratic equations, * deriving the quadratic formula, * graphing quadratic functions, * evaluating integrals in calculus, such as Gaussian integrals with a linear term in the exponent, * finding Laplace transforms. In mathematics, completing the square is often applied in any computation involving quadratic polynomials. History Completing the square was known in the Old Babylonian Empire. Muhammad ibn Musa Al-Khwarizmi, a famed polymath who wrote the early algebraic treatise Al-Jabr, used the technique of completing the square to solve quadratic equations. Overview Background The formula in elementary algebra for computing the square ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abramowitz And Stegun
''Abramowitz and Stegun'' (''AS'') is the informal name of a 1964 mathematical reference work edited by Milton Abramowitz and Irene Stegun of the United States National Bureau of Standards (NBS), now the ''National Institute of Standards and Technology'' (NIST). Its full title is ''Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables''. A digital successor to the Handbook was released as the "Digital Library of Mathematical Functions" (DLMF) on 11 May 2010, along with a printed version, the ''NIST Handbook of Mathematical Functions'', published by Cambridge University Press. Overview Since it was first published in 1964, the 1046 page ''Handbook'' has been one of the most comprehensive sources of information on special functions, containing definitions, identities, approximations, plots, and tables of values of numerous functions used in virtually all fields of applied mathematics. The notation used in the ''Handbook'' is the ''de facto'' standard f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Confluent Hypergeometric Function
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term ''confluent'' refers to the merging of singular points of families of differential equations; ''confluere'' is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: * Kummer's (confluent hypergeometric) function , introduced by , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. * Tricomi's (confluent hypergeometric) function introduced by , sometimes denoted by , is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. * Whittaker functions (for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half-integer
In mathematics, a half-integer is a number of the form :n + \tfrac, where n is an whole number. For example, :, , , 8.5 are all ''half-integers''. The name "half-integer" is perhaps misleading, as the set may be misunderstood to include numbers such as 1 (being half the integer 2). A name such as "integer-plus-half" may be more accurate, but even though not literally true, "half integer" is the conventional term. Half-integers occur frequently enough in mathematics and in quantum mechanics that a distinct term is convenient. Note that halving an integer does not always produce a half-integer; this is only true for odd integers. For this reason, half-integers are also sometimes called half-odd-integers. Half-integers are a subset of the dyadic rationals (numbers produced by dividing an integer by a power of two). Notation and algebraic structure The set of all half-integers is often denoted :\mathbb Z + \tfrac \quad = \quad \left( \tfrac \mathbb Z \right) \smallsetminus \mathb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermite Polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: * signal processing as Hermitian wavelets for wavelet transform analysis * probability, such as the Edgeworth series, as well as in connection with Brownian motion; * combinatorics, as an example of an Appell sequence, obeying the umbral calculus; * numerical analysis as Gaussian quadrature; * physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term \beginxu_\end is present); * systems theory in connection with nonlinear operations on Gaussian noise. * random matrix theory in Gaussian ensembles. Hermite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859. Chebyshev's work was overlooked, and they were named later after Charles Hermite, who wrote on the polynomials in 1864, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |