Weathering Landforms
Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity. Weathering processes are divided into ''physical'' and ''chemical weathering''. Physical weathering involves the breakdown of rocks and soils through the mechanical effects of heat, water, ice, or other agents. Chemical weathering involves the chemical reaction of water, atmospheric gases, and biologically produced chemicals with rocks and soils. Water is the principal agent behind both physical and chemical weathering, though atmospheric oxygen and carbon dioxide and the activities of biological organisms are also important. Chemical weathering by biological action is also known as biological wea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ocean Floor
The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as 'seabeds'. The structure of the seabed of the global ocean is governed by plate tectonics. Most of the ocean is very deep, where the seabed is known as the abyssal plain. Seafloor spreading creates mid-ocean ridges along the center line of major ocean basins, where the seabed is slightly shallower than the surrounding abyssal plain. From the abyssal plain, the seabed slopes upward toward the continents and becomes, in order from deep to shallow, the continental rise, slope, and shelf. The depth within the seabed itself, such as the depth down through a sediment core, is known as the “depth below seafloor.” The ecological environment of the seabed and the deepest waters are collectively known, as a habitat for creatures, as the “benthos.” Most of the seabed throughout the world's oceans is covered in layers of marine sediments. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exfoliation (geology)
Exfoliation joints or sheet joints are surface-parallel fracture systems in rock, and often leading to erosion of concentric slabs. ''(See Joint (geology)).'' General characteristics of exfoliation joints * Commonly follow topography. * Divide the rock into sub-planar slabs. * Joint spacing increases with depth from a few centimeters near the surface to a few meters * Maximum depth of observed occurrence is around 100 meters. * Deeper joints have a larger radius of curvature, which tends to round the corners of the landscape as material is eroded * Fracture mode is tensile * Occur in many different lithologies and climate zones, not unique to glaciated landscapes. * Host rock is generally sparsely jointed, fairly isotropic, and has high compressive strength. * Can have concave and convex upwards curvatures. * Often associated with secondary compressive forms such as arching, buckling, and A-tents (buckled slabs) Formation of exfoliation joints Despite their common occurrenc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Overburden Pressure
Pressure is force magnitude applied over an area. Overburden pressure is a geology term that denotes the pressure caused by the weight of the overlying layers of material at a specific depth under the earth's surface. Overburden pressure is also called lithostatic pressure, or vertical stress. In a stratigraphic layer that is in hydrostatic equilibrium; the overburden pressure at a depth z, assuming the magnitude of the gravity acceleration is approximately constant, is given by: P(z) = P_0 + g \int_^ \rho(z) \, dz Where: * z is the depth in meters. * P(z) is the overburden pressure at depth z. * P_0 is the pressure at the surface. * \rho(z) is the density of the material above the depth z. * g is the gravity acceleration in m/s^2 . In deep-earth geophysics/geodynamics, gravitational acceleration varies significantly over depth and g should not be assumed to be constant, and should be inside the integral. Some sections of stratigraphic layers can be sealed or isolated. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Granite
Granite () is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers. Granite is typical of a larger family of ''granitic rocks'', or ''granitoids'', that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals. Granite is nearly alway ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exhumation (geology)
In geology, the term exhumation refers to the process by which a parcel of rock (that was formerly buried), approaches Earth's surface. It differs from the related ideas of rock uplift and surface uplift in that it is explicitly measured relative to the surface of the Earth, rather than with reference to some absolute reference frame, such as the Earth's geoid. Exhumation of buried rocks should be considered as two different categories namely, exhumation by denudation/erosion or exhumation by tectonic processes followed by erosion. In the latter case, rocks (or rock packages) from deeper crustal levels (meter to kilometer depths below the Earth's surface) are brought towards the Earth's surface (i.e.shallower crustal levels) by crustal thickening (see compared also tectonic uplift) and/or extensional tectonics and are subsequently exposed by erosion. Often exhumation involves a complex interaction between crustal thickening, extensional tectonics and erosion. Notably, there are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geomorphology
Geomorphology (from Ancient Greek: , ', "earth"; , ', "form"; and , ', "study") is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field. Overview Earth's surface is modified by a combination of surface processes that shape landscapes, and geologic processes that cause tectonic uplift and subsidence, and shape the coastal geography. Surface processes co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diurnal Temperature Variation
In meteorology, diurnal temperature variation is the variation between a high air temperature and a low temperature that occurs during the same day. Temperature lag Temperature lag is an important factor in diurnal temperature variation: peak daily temperature generally occurs ''after'' noon, as air keeps net absorbing heat even after noon, and similarly minimum daily temperature generally occurs substantially after midnight, indeed occurring during early morning in the hour around dawn, since heat is lost all night long. The analogous annual phenomenon is seasonal lag. As solar energy strikes the Earth's surface each morning, a shallow layer of air directly above the ground is heated by conduction. Heat exchange between this shallow layer of warm air and the cooler air above is very inefficient. On a warm summer's day, for example, air temperatures may vary by from just above the ground to waist height. Incoming solar radiation exceeds outgoing heat energy for many hours afte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deserts
A desert is a barren area of landscape where little precipitation occurs and, consequently, living conditions are hostile for plant and animal life. The lack of vegetation exposes the unprotected surface of the ground to denudation. About one-third of the land surface of the Earth is arid or semi-arid. This includes much of the polar regions, where little precipitation occurs, and which are sometimes called polar deserts or "cold deserts". Deserts can be classified by the amount of precipitation that falls, by the temperature that prevails, by the causes of desertification or by their geographical location. Deserts are formed by weathering processes as large variations in temperature between day and night put strains on the rocks, which consequently break in pieces. Although rain seldom occurs in deserts, there are occasional downpours that can result in flash floods. Rain falling on hot rocks can cause them to shatter, and the resulting fragments and rubble strewn over the de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Fatigue
Thermo-mechanical fatigue (short TMF) is the overlay of a cyclical mechanical loading, that leads to fatigue of a material, with a cyclical thermal loading. Thermo-mechanical fatigue is an important point that needs to be considered, when constructing turbine engines or gas turbines. Failure mechanisms There are three mechanisms acting in thermo-mechanical fatigue * Creep is the flow of material at high temperatures *Fatigue is crack growth and propagation due to repeated loading *Oxidation is a change in the chemical composition of the material due to environmental factors. The oxidized material is more brittle and prone to crack creation. Each factor has more or less of an effect depending on the parameters of loading. In phase (IP) thermo-mechanical loading (when the temperature and load increase at the same time) is dominated by creep. The combination of high temperature and high stress is the ideal condition for creep. The heated material flows more easily in tension, but cools ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Shock
Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different parts of an object expand by different amounts. This differential expansion can be more directly understood in terms of strain, than in terms of stress, as it is shown in the following. At some point, this stress can exceed the tensile strength of the material, causing a crack to form. If nothing stops this crack from propagating through the material, it will cause the object's structure to fail. Failure due to thermal shock can be prevented by: # Reducing the thermal gradient seen by the object, by changing its temperature more slowly or increasing the material's thermal conductivity # Reducing the material's coefficient of thermal expansion # Increasing its strength # Introducing built-in compressive stress, as for example in tempered ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |