HOME
*





Weak N-category
In category theory, a weak ''n''-category is a generalization of the notion of strict ''n''-category where composition and identities are not strictly associative and unital, but only associative and unital up to coherent equivalence. This generalisation only becomes noticeable at dimensions two and above where weak 2-, 3- and 4-categories are typically referred to as bicategories, tricategories, and tetracategories. The subject of weak ''n''-categories is an area of ongoing research. History There is currently much work to determine what the coherence laws for weak ''n''-categories should be. Weak ''n''-categories have become the main object of study in higher category theory. There are basically two classes of theories: those in which the higher cells and higher compositions are realized algebraically (most remarkably Michael Batanin's theory of weak higher categories) and those in which more topological models are used (e.g. a higher category as a simplicial set satisfy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stabilization Hypothesis
In mathematics, specifically in category theory and algebraic topology, the Baez–Dolan stabilization hypothesis, proposed in , states that suspension Suspension or suspended may refer to: Science and engineering * Suspension (topology), in mathematics * Suspension (dynamical systems), in mathematics * Suspension of a ring, in mathematics * Suspension (chemistry), small solid particles suspend ... of a weak ''n''-category has no more essential effect after ''n'' + 2 times. Precisely, it states that the suspension functor \mathsf_k \to \mathsf_ is an equivalence for k \ge n + 2. References Sources * External links *https://ncatlab.org/nlab/show/stabilization+hypothesis {{categorytheory-stub Algebraic topology Higher category theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opetope
In category theory, a branch of mathematics, an opetope, a portmanteau of "operation" and "polytope", is a shape that captures higher-dimensional substitutions. It was introduced by John C. Baez and James Dolan so that they could define a weak ''n''-category as a certain presheaf In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ... on the category of opetopes. See also * higher-order operad References External links *https://ncatlab.org/nlab/show/opetope Category theory {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinity Category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tetracategory
In category theory, a tetracategory is a weakened definition of a 4-category. See also * Weak ''n''-category * infinity category In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. T ... External links Notes on tetracategoriesby Todd Trimble. Higher category theory {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tricategory
In mathematics, a tricategory is a kind of structure of category theory studied in higher-dimensional category theory. Whereas a weak 2-category is said to be a ''bicategory'', a weak 3-category is said to be a ''tricategory'' (Gordon, Power & Street 1995; Baez & Dolan 1996; Leinster 1998). Tetracategories are the corresponding notion in dimension four. Dimensions beyond three are seen as increasingly significant to the relationship between knot theory and physics. John Baez John Carlos Baez (; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, appl ..., R. Gordon, A. J. Power and Ross Street have done much of the significant work with categories beyond bicategories thus far. See also * Weak ''n''-category References External linksThe Dimensional Ladder
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bicategory
In mathematics, a bicategory (or a weak 2-category) is a concept in category theory used to extend the notion of category to handle the cases where the composition of morphisms is not (strictly) associative, but only associative ''up to'' an isomorphism. The notion was introduced in 1967 by Jean Bénabou. Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to tricategories, and more generally to weak ''n''-categories for ''n''-categories. Definition Formally, a bicategory B consists of: * objects ''a'', ''b'', ... called 0-''cells''; * morphisms ''f'', ''g'', ... with fixed source and target objects called 1-''cells''; * "morphisms between morphisms" ρ, σ, ... with fixed source and target morphisms (which should have themselves the same source and the same target), called 2-''cells''; with some more structure: * given two objects ''a'' and ''b'' there is a category B(''a'', ''b'') whose objects are the 1- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Presentation Of An ∞-category
A presentation conveys information from a speaker to an audience. Presentations are typically demonstrations, introduction, lecture, or speech meant to inform, persuade, inspire, motivate, build goodwill, or present a new idea/product. Presentations usually require preparation, organization, event planning, writing, use of visual aids, dealing with stress, and answering questions. “The key elements of a presentation consists of presenter, audience, message, reaction and method to deliver speech for organizational success in an effective manner.” Presentations are widely used in tertiary work settings such as accountants giving a detailed report of a company's financials or an entrepreneur pitching their venture idea to investors. The term can also be used for a formal or ritualized introduction or offering, as with the presentation of a debutante. Presentations in certain formats are also known as keynote address. Interactive presentations, in which the audience is involved, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Model Category
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', ' fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes (derived category theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic ''K''-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results. Motivation Model categories can provide a natural setting for homotopy theory: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of simplicial sets. Another model category is the category of chain complexes of ''R''-modules for a commutative ring ''R''. Homotopy th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maxim Kontsevich
Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques and a distinguished professor at the University of Miami. He received the Henri Poincaré Prize in 1997, the Fields Medal in 1998, the Crafoord Prize in 2008, the Shaw Prize and Fundamental Physics Prize in 2012, and the Breakthrough Prize in Mathematics in 2014. Academic career and research He was born into the family of Lev Kontsevich, Soviet orientalist and author of the Kontsevich system. After ranking second in the All-Union Mathematics Olympiads, he attended Moscow State University but left without a degree in 1985 to become a researcher at the Institute for Information Transmission Problems in Moscow. While at the institute he published papers that caught the interest of the Max Planck Institute in Bonn and was invited for three ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]