HOME
*





Weak ESS
A weak evolutionarily stable strategy (WESS) is a more broad form of evolutionarily stable strategy (ESS). Like ESS, a WESS is able to defend against an invading "mutant" strategy. This means the WESS cannot be entirely eliminated from the population. The definition of WESS is similar to ESS. Any strategy ''s'' is a weakly evolutionarily stable strategy (WESS) if for any strategy s*≠s: (i) u(s, s) > u(s*, s) or (ii) u(s, s) = u(s*, s) and u(s, s*) ≥ u(s*, s*). One example of WESS, in a prisoner's dilemma, is Tit-for-tat Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558. It is also a highly effective strategy in game theory. An agent using this strategy will first cooperate, then subseque ... (a strategy that cooperates in the first interaction and then reciprocates the other player's action from the previous turn in all other iterations). References {{reflist Evolutionary game theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evolutionarily Stable Strategy
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is ''impermeable'' when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set of strategies) which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science. In game-theoretical terms, an ESS is an equilibrium refinement of the Nash equilibrium, being a Nash equilibrium that is also "evolutionarily stable." Thus, once fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from replacing it (although this does not preclude the possibility that a better strategy, or set of strategies, will emerge in response to selective pressures r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prisoner's Dilemma
The Prisoner's Dilemma is an example of a game analyzed in game theory. It is also a thought experiment that challenges two completely rational agents to a dilemma: cooperate with their partner for mutual reward, or betray their partner ("defect") for individual reward. This dilemma was originally framed by Merrill Flood and Melvin Dresher while working at RAND in 1950. Albert W. Tucker appropriated the game and formalized it by structuring the rewards in terms of prison sentences and named it "prisoner's dilemma". William Poundstone in his 1993 book ''Prisoner's Dilemma'' writes the following version:Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of speaking to or exchanging messages with the other. The police admit they don't have enough evidence to convict the pair on the principal charge. They plan to sentence both to two years in prison on a lesser charge. Simultaneously, the police offer each prisoner a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tit-for-tat
Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558. It is also a highly effective strategy in game theory. An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not. Game theory Tit-for-tat has been very successfully used as a strategy for the iterated prisoner's dilemma. The strategy was first introduced by Anatol Rapoport in Robert Axelrod's two tournaments, held around 1980. Notably, it was (on both occasions) both the simplest strategy and the most successful in direct competition. An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not. This is similar to reciprocal altruism in biology. History The term develo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]