Vehicular Dynamics
   HOME
*





Vehicular Dynamics
For motorized vehicles, such as automobiles, aircraft, and watercraft, vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics. Factors affecting vehicle dynamics The aspects of a vehicle's design which affect the dynamics can be grouped into drivetrain and braking, suspension and steering, distribution of mass, aerodynamics and tires. Drivetrain and braking * Automobile layout (i.e. location of engine and driven wheels) * Powertrain * Braking system Suspension and steering Some attributes relate to the geometry of the suspension, steering and chassis. These include: * Ackermann steering geometry * Axle track * Camber angle * Caster angle * Ride height * Roll center * Scrub radius * Steering ratio * Toe * Wheel alignment * Wheelbase Distributi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aircraft Principal Axes
An aircraft in flight is free to rotate in three dimensions: '' yaw'', nose left or right about an axis running up and down; ''pitch'', nose up or down about an axis running from wing to wing; and ''roll'', rotation about an axis running from nose to tail. The axes are alternatively designated as ''vertical'', ''lateral'' (or ''transverse''), and ''longitudinal'' respectively. These axes move with the vehicle and rotate relative to the Earth along with the craft. These definitions were analogously applied to spacecraft when the first manned spacecraft were designed in the late 1950s. These rotations are produced by torques (or moments) about the principal axes. On an aircraft, these are intentionally produced by means of moving control surfaces, which vary the distribution of the net aerodynamic force about the vehicle's center of gravity. Elevators (moving flaps on the horizontal tail) produce pitch, a rudder on the vertical tail produces yaw, and ailerons (flaps on the win ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scrub Radius
The scrub radius is the distance in front view between the king pin axis and the center of the contact patch of the wheel, where both would theoretically touch the road. It can be positive, negative or zero. The kingpin axis also known as steering inclination is the line between the upper and lower pivot points of the steering knuckle. If the kingpin axis intersection point is outboard of the center of the contact patch, it is negative; if inside the contact patch, it is positive. The term scrub radius derives from the fact that either in the positive or negative mode, the tire does not turn on its centerline (it scrubs the road in a turn) and due to the increased friction, more effort is needed to turn the wheel. Large positive values of scrub radius, 4 inches/100 mm or so, were used in cars for many years. The advantage of this is that the tire rolls as the wheel is steered, which reduces the effort when parking, provided you're not on the brake. The advantage of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automobile Drag Coefficient
The drag coefficient is a common measure in automotive design as it pertains to aerodynamics. Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics. Aerodynamic drag increases with the square of speed; therefore it becomes critically important at higher speeds. Reducing the drag coefficient in an automobile improves the performance of the vehicle as it pertains to speed and fuel efficiency. There are many different ways to reduce the drag of a vehicle. A common way to measure the drag of the vehicle is through the drag area. Reducing drag The reduction of drag in road vehicles has led to increases in the top speed of the vehicle and the vehicle's fuel efficiency, as well as many other perfor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aerodynamics
Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics. The term ''aerodynamics'' is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving Aircraft#Heavier than air – aerodynes, heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weight Distribution
Weight distribution is the apportioning of weight within a vehicle, especially cars, airplanes An airplane or aeroplane (informally plane) is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spectr ..., and trains. Typically, it is written in the form ''x''/''y'', where ''x'' is the percentage of weight in the front, and ''y'' is the percentage in the back. In a vehicle which relies on gravity in some way, weight distribution directly affects a variety of vehicle characteristics, including car handling, handling, acceleration, traction (engineering), traction, and component life. For this reason weight distribution varies with the vehicle's intended usage. For example, a Drag racing, drag car maximizes traction at the rear axle while countering the reactionary pitch-up torque. It generates this counter-torque by placing a small amount ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unsprung Mass
The unsprung mass (colloquially unsprung weight) of a vehicle is the mass of the suspension, wheels or tracks (as applicable), and other components directly connected to them. This contrasts with the sprung mass (or weight) supported by the suspension, which includes the body and other components within or attached to it. Components of the unsprung mass include the wheel axles, wheel bearings, wheel hubs, tires, and a portion of the weight of driveshafts, springs, shock absorbers, and suspension links. Brakes that are mounted inboard (i.e. as on the drive shaft, and not part of the wheel or its hub) are part of a vehicle's sprung mass. Effects The unsprung mass of a typical wheel/tire combination represents a trade-off between the pair's bump-absorbing/road-tracking ability and vibration isolation. Bumps and surface imperfections in the road cause tire compression, inducing a force on the unsprung mass. The unsprung mass then reacts to this force with movement of its o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sprung Mass
Sprung mass (or sprung weight), in a vehicle with a suspension, such as an automobile, motorcycle, or a tank, is the portion of the vehicle's total mass that is supported by the suspension, including in most applications approximately half of the weight of the suspension itself. The sprung mass typically includes the body, frame, the internal components, passengers, and cargo, but does not include the mass of the components at the other end of the suspension components (including the wheels, wheel bearings, brake rotors, calipers, and/or continuous tracks (also called caterpillar tracks), if any), which are part of the vehicle's unsprung mass. The larger the ratio of sprung mass to unsprung mass, the less the body and vehicle occupants are affected by bumps, dips, and other surface imperfections such as small bridges. However, a large sprung mass to unsprung mass ratio can also be deleterious to vehicle control. See also * Unsprung mass The unsprung mass (colloquially unsp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roll Moment
Roll moment is a moment, which is a product of a force and a distance, that tends to cause a vehicle to roll, that is to rotate about its longitudinal axis. Landcraft In vehicle dynamics, the roll moment can be calculated as the product of three quantities: #the vehicle's sprung mass, the portion of its mass supported by the suspension, #whatever lateral acceleration that the vehicle is experiencing, usually centripetal acceleration from a turn, and #the vertical distance between the vehicle's roll axis and its center of mass. In two-axle vehicles, such as cars and some trucks, the roll axis may be found by connecting the roll center of each axle by a straight line. In single-track vehicles, such as bicycles and motorcycles, the roll axis may be found by connecting the contact patches of each tire by a straight line. Aircraft In aeronautics, the roll moment is the product of an aerodynamic force and the distance between where it is applied and the aircraft's center of mass that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Of Inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an axis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Center Of Mass
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion. In the case of a single rigid body, the center of mass is fixed in relation to the body, and if the body has uniform density, it will be located at the centroid. The center of mass may be located outside the physical body, as is sometimes the case for hollow or open-shaped objects, such as a horseshoe. In the case of a dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wheelbase
In both road and rail vehicles, the wheelbase is the horizontal distance between the centers of the front and rear wheels. For road vehicles with more than two axles (e.g. some trucks), the wheelbase is the distance between the steering (front) axle and the centerpoint of the driving axle group. In the case of a tri-axle truck, the wheelbase would be the distance between the steering axle and a point midway between the two rear axles. Vehicles The wheelbase of a vehicle equals the distance between its front and rear wheels. At equilibrium, the total torque of the forces acting on a vehicle is zero. Therefore, the wheelbase is related to the force on each pair of tires by the following formula: :F_f = mg :F_r = mg where F_f is the force on the front tires, F_r is the force on the rear tires, L is the wheelbase, d_r is the distance from the center of mass (CM) to the rear wheels, d_f is the distance from the center of mass to the front wheels (d_f + d_r = L), m is the mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]