Veblen Function
   HOME
*





Veblen Function
In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α. These functions are all normal.


The Veblen hierarchy

In the special case when φ0(α)=ωα this family of functions is known as the Veblen hierarchy. The function φ1 is the same as the ε function: φ1(α)= εα. If \alpha < \beta \,, then \varphi_(\varphi_(\gamma)) = \varphi_(\gamma).M. Rathjen

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ackermann Ordinal
In mathematics, the Ackermann ordinal is a certain large countable ordinal, named after Wilhelm Ackermann. The term "Ackermann ordinal" is also occasionally used for the small Veblen ordinal, a somewhat larger ordinal. Unfortunately there is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen function In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φ ...s to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The last one is an extension of the Veblen functions for more than 2 arguments. The smaller Ackermann ordinal is the limit of a system of ordinal notations invented by , and is some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Numbers
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PostScript
PostScript (PS) is a page description language in the electronic publishing and desktop publishing realm. It is a dynamically typed, concatenative programming language. It was created at Adobe Systems by John Warnock, Charles Geschke, Doug Brotz, Ed Taft and Bill Paxton from 1982 to 1984. History The concepts of the PostScript language were seeded in 1976 by John Gaffney at Evans & Sutherland, a computer graphics company. At that time Gaffney and John Warnock were developing an interpreter for a large three-dimensional graphics database of New York Harbor. Concurrently, researchers at Xerox PARC had developed the first laser printer and had recognized the need for a standard means of defining page images. In 1975-76 Bob Sproull and William Newman developed the Press format, which was eventually used in the Xerox Star system to drive laser printers. But Press, a data format rather than a language, lacked flexibility, and PARC mounted the Interpress effort to create a succ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small Veblen Ordinal
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by is somewhat smaller than the small Veblen ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal \Gamma_0. Most systems of notation use symbols such as \psi(\alpha), \theta(\alpha), \psi_\alpha(\beta), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are "collapsing functions". The small Veblen ordinal \theta_(0) or \psi(\Omega^) is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connected by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Path Ordering (term Rewriting)
In theoretical computer science, in particular in term rewriting, a path ordering is a well-founded strict total order (>) on the set of all terms such that :''f''(...) > ''g''(''s''1,...,''s''''n'')   if   ''f'' .> ''g''   and   ''f''(...) > ''s''''i'' for ''i''=1,...,''n'', where (.>) is a user-given total precedence order on the set of all function symbols. Intuitively, a term ''f''(...) is bigger than any term ''g''(...) built from terms ''s''''i'' smaller than ''f''(...) using a lower-precedence root symbol ''g''. In particular, by structural induction, a term ''f''(...) is bigger than any term containing only symbols smaller than ''f''. A path ordering is often used as reduction ordering in term rewriting, in particular in the Knuth–Bendix completion algorithm. As an example, a term rewriting system for " multiplying out" mathematical expressions could contain a rule ''x''*(''y''+''z'') → (''x''*''y'') + (''x''*''z''). In order to p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Veblen Ordinal
In mathematics, the large Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen function In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φ ...s to produce countable ordinals even for uncountable arguments, and some of which are ordinal collapsing functions. The large Veblen ordinal is sometimes denoted by \phi_(0) or \theta(\Omega^\Omega) or \psi(\Omega^). It was constructed by Veblen using an extension of Veblen functions allowing infinitely many arguments. References * * {{Number-stub Ordinal numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal \kappa: # \kappa is a regular cardinal. # If \kappa = \sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. # The



Small Veblen Ordinal
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by is somewhat smaller than the small Veblen ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal \Gamma_0. Most systems of notation use symbols such as \psi(\alpha), \theta(\alpha), \psi_\alpha(\beta), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are "collapsing functions". The small Veblen ordinal \theta_(0) or \psi(\Omega^) is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connected by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Feferman–Schütte Ordinal
In mathematics, the Feferman–Schütte ordinal Γ0 is a large countable ordinal. It is the proof-theoretic ordinal of several mathematical theories, such as arithmetical transfinite recursion. It is named after Solomon Feferman and Kurt Schütte, the former of whom suggested the name Γ0. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal. There are several ways of representing the Feferman–Schütte ordinal, some of which use ordinal collapsing function In mathematical logic and set theory, an ordinal collapsing function (or projection function) is a technique for defining ( notations for) certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger ...s: \psi(\Omega^\Omega), \theta(\Omega), \varphi_\Omega(0), or \varphi(1,0,0). Definition The Feferman–Schütte ordinal can be defined as the smallest ordinal that cannot be obtained by starting with 0 and using the operations of ordinal addition an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Function
In axiomatic set theory, a function ''f'' : Ord → Ord is called normal (or a normal function) if and only if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions: # For every limit ordinal ''γ'' (i.e. ''γ'' is neither zero nor a successor), it is the case that ''f''(''γ'') = sup . # For all ordinals ''α'' < ''β'', it is the case that ''f''(''α'') < ''f''(''β'').


Examples

A simple normal function is given by (see ). But is ''not'' normal because it is not continuous at any limit ordinal; that is, the inverse image of the one-point open set is the set , which is not open when ''λ'' is a limit ordinal. If ''β'' is a fixed ordinal, then the functions , (for ), and (for ) are all normal. More important exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]