Variety (universal Algebra)
   HOME
*





Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to #Birkhoff's_theorem, Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphism, homomorphic images, subalgebras and Direct product#Direct product in universal algebra, (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a Category (mathematics), category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all F-coalgebra, coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Basic idea In universal algebra, an algebra (or algebraic structure) is a set ''A'' together with a collection of operations on ''A''. An ''n''- ary operation on ''A'' is a function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a '' constant'', often denoted by a letter like ''a''. A 1-ary operation (or ''unary operation'') is simply a function from ''A'' to ''A'', often denoted by a symbol placed in front of its argument, like ~''x''. A 2-ary operation (or ''binary operation'') is often denoted by a symbol placed between its argum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Polynomial Equations
A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations where the are polynomials in several variables, say , over some field . A ''solution'' of a polynomial system is a set of values for the s which belong to some algebraically closed field extension of , and make all equations true. When is the field of rational numbers, is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of , which is isomorphic to a subfield of the complex numbers. This article is about the methods for solving, that is, finding all solutions or describing them. As these methods are designed for being implemented in a computer, emphasis is given on fields in which computation (including equality testing) is easy and efficient, that is the field of rational numbers and finite fields. Searching for solutions that belong to a specific set is a problem which is generally much more difficult, and is outs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiidentity
In universal algebra, a quasi-identity is an implication of the form :''s''1 = ''t''1 ∧ … ∧ ''s''''n'' = ''t''''n'' → ''s'' = ''t'' where ''s''1, ..., ''s''''n'', ''t''1, ..., ''t''''n'', ''s'', and ''t'' are terms built up from variables using the operation symbols of the specified signature. A quasi-identity amounts to a conditional equation for which the conditions themselves are equations. Alternatively, it can be seen as a disjunction of inequations and one equation ''s''1 ≠ ''t''1 ∨ ... ∨ ''s''''n'' ≠ ''t''''n'' ∨ ''s'' = ''t''—that is, as a definite Horn clause. A quasi-identity with ''n'' = 0 is an ordinary identity or equation, so quasi-identities are a generalization of identities. See also * Quasivariety In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasivariety
In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A quasivariety is a class ''K'' of algebras with a specified signature satisfying any of the following equivalent conditions. 1. ''K'' is a pseudoelementary class closed under subalgebras and direct products. 2. ''K'' is the class of all models of a set of quasiidentities, that is, implications of the form s_1 \approx t_1 \land \ldots \land s_n \approx t_n \rightarrow s \approx t, where s, s_1, \ldots, s_n,t, t_1, \ldots, t_n are terms built up from variables using the operation symbols of the specified signature. 3. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, and reduced products. 4. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, direct products, and ultraproducts. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE