Quasiidentity
In universal algebra, a quasi-identity is an implication of the form :''s''1 = ''t''1 ∧ … ∧ ''s''''n'' = ''t''''n'' → ''s'' = ''t'' where ''s''1, ..., ''s''''n'', ''t''1, ..., ''t''''n'', ''s'', and ''t'' are terms built up from variables using the operation symbols of the specified signature. A quasi-identity amounts to a conditional equation for which the conditions themselves are equations. Alternatively, it can be seen as a disjunction of inequations and one equation ''s''1 ≠ ''t''1 ∨ ... ∨ ''s''''n'' ≠ ''t''''n'' ∨ ''s'' = ''t''—that is, as a definite Horn clause. A quasi-identity with ''n'' = 0 is an ordinary identity or equation, so quasi-identities are a generalization of identities. See also * Quasivariety In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasivariety
In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A quasivariety is a class ''K'' of algebras with a specified signature satisfying any of the following equivalent conditions. 1. ''K'' is a pseudoelementary class closed under subalgebras and direct products. 2. ''K'' is the class of all models of a set of quasiidentities, that is, implications of the form s_1 \approx t_1 \land \ldots \land s_n \approx t_n \rightarrow s \approx t, where s, s_1, \ldots, s_n,t, t_1, \ldots, t_n are terms built up from variables using the operation symbols of the specified signature. 3. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, and reduced products. 4. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, direct products, and ultraproducts. Examp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Basic idea In universal algebra, an algebra (or algebraic structure) is a set ''A'' together with a collection of operations on ''A''. An ''n''- ary operation on ''A'' is a function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a '' constant'', often denoted by a letter like ''a''. A 1-ary operation (or ''unary operation'') is simply a function from ''A'' to ''A'', often denoted by a symbol placed in front of its argument, like ~''x''. A 2-ary operation (or ''binary operation'') is often denoted by a symbol placed between its argum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variables and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Formal definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''-ary if its arity is ''n''. Some authors define a nullary (0-ary) function symbol as ''constant s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Horn Clause
In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form which gives it useful properties for use in logic programming, formal specification, and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951. Definition A Horn clause is a clause (a disjunction of literals) with at most one positive, i.e. unnegated, literal. Conversely, a disjunction of literals with at most one negated literal is called a dual-Horn clause. A Horn clause with exactly one positive literal is a definite clause or a strict Horn clause; a definite clause with no negative literals is a unit clause, and a unit clause without variables is a fact;. A Horn clause without a positive literal is a goal clause. Note that the empty clause, consisting of no literals (which is equivalent to ''false'') is a goal clause. These three kinds of Horn clauses are illustrated in the following propositional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity (mathematics)
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |