HOME
*





Voronoi Formula
In mathematics, a Voronoi formula is an equality involving Fourier coefficients of automorphic forms, with the coefficients twisted by additive characters on either side. It can be regarded as a Poisson summation formula for non-abelian groups. The Voronoi (summation) formula for GL(2) has long been a standard tool for studying analytic properties of automorphic forms and their ''L''-functions. There have been numerous results coming out the Voronoi formula on GL(2). The concept is named after Georgy Voronoy. Classical application To Voronoy and his contemporaries, the formula appeared tailor-made to evaluate certain finite sums. That seemed significant because several important questions in number theory involve finite sums of arithmetic quantities. In this connection, let us mention two classical examples, Dirichlet’s divisor problem and the Gauss’ circle problem. The former estimates the size of ''d''(''n''), the number of positive divisors of an integer ''n''. Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''period''), the number of components, and their amplitudes and phase parameters. With appropriate choices, one cycle (or ''period'') of the summation can be made to approximate an arbitrary function in that interval (or the entire function if it too is periodic). The number of components is theoretically infinite, in which case the other parameters can be chosen to cause the series to converge to almost any ''well behaved'' periodic function (see Pathological and Dirichlet–Jordan test). The components of a particular function are determined by ''analysis'' techniques described in this article. Sometimes the components are known first, and the unknown function is ''synthesized'' by a Fourier series. Such is the case of a discrete-ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Character
Additive may refer to: Mathematics * Additive function, a function in number theory * Additive map, a function that preserves the addition operation * Additive set-functionn see Sigma additivity * Additive category, a preadditive category with finite biproducts * Additive inverse, an arithmetic concept Science * Additive color, as opposed to subtractive color * Additive model, a statistical regression model * Additive synthesis, an audio synthesis technique * Additive genetic effects * Additive quantity, a physical quantity that is additive for subsystems; see Intensive and extensive properties Engineering * Feed additive * Gasoline additive, a substance used to improve the performance of a fuel, lower emissions or clean the engine * Oil additive, a substance used to improve the performance of a lubricant * Weakly additive, the quality of preferences in some logistics problems * Polymer additive * Pit additive, a material aiming to reduce fecal sludge build-up and control odor i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Summation Formula
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation. Forms of the equation Consider an aperiodic function s(x) with Fourier transform S(f) \triangleq \int_^ s(x)\ e^\, dx, alternatively designated by \hat s(f) and \mathcal\(f). The basic Poisson summation formula is: Also consider periodic functions, where parameters T>0 and P>0 are in the same units as x: :s_(x) \triangleq \sum_^ s(x + nP) \quad \text \quad S_(f) \triangleq \sum_^ S(f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Non-abelian Group
In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (''G'', ∗) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' ∗ ''b'' ≠ ''b'' ∗ ''a''. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute). Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group. A common example from physics is the rotation group SO(3) in three dimensions (for example, rotating something 90 degrees along one axis and then 90 degrees along a different axis is not the same as doing them in reverse order). Both discrete groups and continuous groups may be non-abelian. Most of the interesting Lie groups are non-abelian, and these play an important role in gauge theory. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Georgy Voronoy
Georgy Feodosevich Voronoy (russian: Георгий Феодосьевич Вороной; ukr, Георгій Феодосійович Вороний; 28 April 1868 – 20 November 1908) was an Russian Empire, Imperial Russian mathematician of Ukraine, Ukrainian descent noted for defining the Voronoi diagram. Biography Voronoy was born in the village of Zhuravka, Pyriatyn, in the Poltava Governorate, which was a part of the Russian Empire at that time and is in Varva Raion, Chernihiv Oblast, Ukraine. Beginning in 1889, Voronoy studied at Saint Petersburg State University, Saint Petersburg University, where he was a student of Andrey Markov. In 1894 he defended his master's thesis ''On algebraic integers depending on the roots of an equation of third degree''. In the same year, Voronoy became a professor at the University of Warsaw, where he worked on continued fractions. In 1897, he defended his doctoral thesis ''On a generalisation of a continuous fraction''. He was an Invite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maass Cusp Form
In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup \Gamma of \mathrm_(\R) as modular forms. They are Eigenforms of the hyperbolic Laplace Operator \Delta defined on \mathbb and satisfy certain growth conditions at the cusps of a fundamental domain of \Gamma. In contrast to the modular forms the Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949. General remarks The group : G := \mathrm_(\R) = \left\ operates on the upper half plane :\mathbb = \ by fractional linear transformations: :\begin a & b \\ c & d \\ \end \cdot z := \frac. It can be extended to an operation on \mathbb \cup \ \cup \mathbb by defining: :\begin a & b \\ c & d \\ \end\cdot z :=\begin \frac & \text cz+d \neq 0, \\ \infty & \text cz+d=0,\end :\begin a & b \\ c & d \\ \end \cdot \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Group
In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. Definition The modular group is the group of linear fractional transformations of the upper half of the complex plane, which have the form :z\mapsto\frac, where , , , are integers, and . The group operation is function composition. This group of transformations is isomorphic to the projective special linear group , which is the quotient of the 2-dimensional special linear group over the integers by its center . In other words, consists of all matrices :\begin a & b \\ c & d \end where , , , are integers, , and pairs of matrices and are considered to be identical. The group operation is the usual mult ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Transform
In mathematics, the Hankel transform expresses any given function ''f''(''r'') as the weighted sum of an infinite number of Bessel functions of the first kind . The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor ''k'' along the ''r'' axis. The necessary coefficient of each Bessel function in the sum, as a function of the scaling factor ''k'' constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval. Definition The Hankel transform of order \nu of a function ''f''(''r'') is given by : F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) \,r\,\mathrmr, where J_\nu is the Bessel function of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automorphic Forms
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]