HOME
*



picture info

Von Kármán Swirling Flow
Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc. Flow description Consider a planar disk of infinite radius rotating at a constant angular velocity \Omega in fluid which is initially at rest everywhere. Near to the surface, the fluid is being turned by the disk, due to friction, which then causes centrifugal forces which move the fluid outwards. This outward radial motion of the fluid near the disk must be accompanied by an inward axial motion of the fluid towards the disk to conserve mass. Theodore von Kármán n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theodore Von Kármán
Theodore von Kármán ( hu, ( szőllőskislaki) Kármán Tódor ; born Tivadar Mihály Kármán; 11 May 18816 May 1963) was a Hungarian-American mathematician, aerospace engineer, and physicist who was active primarily in the fields of aeronautics and astronautics. He was responsible for many key advances in aerodynamics, notably on supersonic and hypersonic airflow characterization. He is regarded as an outstanding aerodynamic theoretician of the 20th century. Early life Theodore von Kármán was born into a Jewish family in Budapest, Austria-Hungary, as Kármán Tódor, the son of Helen (Kohn, hu, Kohn Ilka) and Mór Kármán. One of his ancestors was Rabbi Judah Loew ben Bezalel. He studied engineering at the city's Royal Joseph Technical University, known today as Budapest University of Technology and Economics. After graduating in 1902 he moved to the German Empire and joined Ludwig Prandtl at the University of Göttingen, where he received his doctorate in 1908. He taug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vorticity
In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings. Mathematically, the vorticity \vec is the curl of the flow velocity \vec: :\vec \equiv \nabla \times \vec\,, where \nabla is the nabla operator. Conceptually, \vec could be determined by marking parts of a continuum in a small neighborhood of the point in question, and watching their ''relative'' displacements as they move along the flow. The vorticity \vec would be twice the mean angular velocity vector of those particles relative to their center of mass, oriented according to the right-hand rule. In a two-dimensional fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blasius Boundary Layer
In physics and fluid mechanics, a Blasius boundary layer (named after Paul Richard Heinrich Blasius) describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow (Falkner–Skan boundary layer), i.e. flows in which the plate is not parallel to the flow. Prandtl's boundary layer equations Using scaling arguments, Ludwig Prandtl argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate). This leads to a reduced set of equations known as the boundary layer equations. For steady incompressible flow with constant viscosity and density, these read: Mass Continuity: \dfrac+\dfrac=0 x-Momentum: u \dfrac + v \dfrac = - \dfrac \dfrac + \dfrac y-Momentum: 0= - \dfrac \dfrac Here the coordinate system is chosen with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stagnation Point Flow
In fluid dynamics, stagnation point flow represents the flow of a fluid in the immediate neighborhood of a stagnation point (or a stagnation line) with which the stagnation point (or the line) is identified for a potential flow or inviscid flow. The flow specifically considers a class of stagnation points known as saddle points where the incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface. Stagnation point flow without solid surfaces When two streams either of two-dimensional or axisymmetric nature impinge on each other orthogonally, a stagnation plane is created, where the incoming streams are diverted tangentially outwards; thus on the stagnation plane, the velocity component normal to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Navier–Stokes Equations
In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes). The Navier–Stokes equations mathematically express conservation of momentum and conservation of mass for Newtonian fluids. They are sometimes accompanied by an equation of state relating pressure, temperature and density. They arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing ''viscous flow''. The difference between them and the closely related Euler equations is that Navier–Stokes equations take ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Karman Swirling Flow With Pressure
The term ''von'' () is used in German language surnames either as a nobiliary particle indicating a noble patrilineality, or as a simple Preposition and postposition, preposition used by commoners that means ''of'' or ''from''. Nobility directories like the ''Almanach de Gotha'' often abbreviate the noble term ''von'' to ''v.'' In medieval or early modern names, the ''von'' particle was at times added to commoners' names; thus, ''Hans von Duisburg'' meant "Hans from [the city of] Duisburg". This meaning is preserved in Swiss toponymic surnames and in the Dutch language, Dutch or Afrikaans ''Van (Dutch), van'', which is a cognate of ''von'' but does not indicate nobility. Usage Germany and Austria The abolition of the Monarchy, monarchies in Germany and Austria in 1919 meant that neither state has a privileged nobility, and both have exclusively republican governments. In Germany, this means that legally ''von'' simply became an ordinary part of the surnames of the people w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Number
In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow ( eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




George Keith Batchelor
George Keith Batchelor FRS (8 March 1920 – 30 March 2000) was an Australian applied mathematician and fluid dynamicist. He was for many years a Professor of Applied Mathematics in the University of Cambridge, and was founding head of the Department of Applied Mathematics and Theoretical Physics (DAMTP). In 1956 he founded the influential ''Journal of Fluid Mechanics'' which he edited for some forty years. Prior to Cambridge he studied at Melbourne High School and University of Melbourne. As an applied mathematician (and for some years at Cambridge a co-worker with Sir Geoffrey Taylor in the field of turbulent flow), he was a keen advocate of the need for physical understanding and sound experimental basis. His ''An Introduction to Fluid Dynamics'' (CUP, 1967) is still considered a classic of the subject, and has been re-issued in the ''Cambridge Mathematical Library'' series, following strong current demand. Unusual for an 'elementary' textbook of that era, it presented a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ekman Layer
The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean. There are two types of Ekman layers. The first type occurs at the surface of the ocean and is forced by surface winds, which act as a drag on the surface of the ocean. The second type occurs at the bottom of the atmosphere and ocean, where frictional forces are associated with flow over rough surfaces. History Ekman developed the theory of the Ekman layer after Fridtjof Nansen observed that ice drifts at an angle of 20°–40° to the right of the prevailing wind direction while on an Arctic expedition aboard the Fram. Nansen asked his colleague, Vilhelm Bjerknes to set one of his students upon study of the problem. Bjerknes tapped Ekman, who presented his results in 1902 as his doctoral thesis. Mathematical formulation The mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philip Drazin
Philip Gerald Drazin (25 May 1934 – 10 January 2002) was a British mathematician and a leading international expert in fluid dynamics. He completed his PhD at the University of Cambridge under G. I. Taylor in 1958. He was awarded the Smith's Prize in 1957. After leaving Cambridge, he spent two years at MIT before moving to the University of Bristol, where he stayed and became a Professor until retiring in 1999. After retiring, he lectured at the University of Oxford and the University of Bath until his death in 2002. Drazin worked on hydrodynamic stability and the transition to turbulence. His 1974 paper ''On a model of instability of a slowly-varying flow'' introduced the concept of a global mode solution to a system of partial differential equations such as the Navier-Stokes equations. He also worked on solitons. In 1998 he was awarded the Symons Gold Medal of the Royal Meteorological Society. References External links Philip Gerald Drazinat the Mathematics Geneal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Norman Riley (professor)
Norman Riley is an Emeritus Professor of Applied Mathematics at the University of East Anglia in Norwich (UK). Biography Following High School education at Calder High School, Mytholmroyd he read Mathematics at Manchester University graduating with first class honours in 1956, followed by a PhD in 1959. Norman Riley served for one year as an Assistant Lecturer at Manchester University and then spent four years as a lecturer at Durham University before he joined the then new University of East Anglia in 1964, the year that saw the first significant intake of students to the university. Promotion to Reader in 1966 was followed by promotion to a Personal Chair in 1971. He retired in 1999. Married in 1959 he has one son and one daughter. Research contributions His research contributions in the field of fluid mechanics, over five decades, have included: unsteady flows with application to acoustic levitation and the loading on the submerged horizontal pontoons of tethered leg platf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Keith Stewartson
Keith Stewartson (20 September 1925 – 7 May 1983) was an English mathematician and fellow of the Royal Society. Early life The youngest of three children, Stewartson was born to an English baker in 1925. He was raised in Billingham, County Durham, where he attended Stockton Secondary School, and went to St Catharine's College, Cambridge in 1942. He won the Drury Prize in 1943 for his work in Mathematical Tripos. Career After graduation, with the Second World War still on-going, Stewartson began employment with the Ministry of Aircraft Production. During his time there he studied compressible fluid flow problems. After the war he returned to Cambridge and received the Mayhew Prize in 1946. He resumed research under the guidance of Leslie Howarth on boundary layer theory. His research led to his first publication, "Correlated incompressible and compressible boundary layers", which was published by the Royal Society in 1949. He received his doctorate the same year and became a l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]