HOME
*



picture info

Viète's Formula
In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant : \frac2\pi = \frac2 \cdot \frac2 \cdot \frac2 \cdots It can also be represented as: \frac2\pi = \prod_^ \cos \frac The formula is named after François Viète, who published it in 1593. As the first formula of European mathematics to represent an infinite process, it can be given a rigorous meaning as a limit expression, and marks the beginning of mathematical analysis. It has linear convergence, and can be used for calculations of , but other methods before and since have led to greater accuracy. It has also been used in calculations of the behavior of systems of springs and masses, and as a motivating example for the concept of statistical independence. The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viète's Formula
In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant : \frac2\pi = \frac2 \cdot \frac2 \cdot \frac2 \cdots It can also be represented as: \frac2\pi = \prod_^ \cos \frac The formula is named after François Viète, who published it in 1593. As the first formula of European mathematics to represent an infinite process, it can be given a rigorous meaning as a limit expression, and marks the beginning of mathematical analysis. It has linear convergence, and can be used for calculations of , but other methods before and since have led to greater accuracy. It has also been used in calculations of the behavior of systems of springs and masses, and as a motivating example for the concept of statistical independence. The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ferdinand Rudio
Ferdinand Rudio (born 2 August 1856 in Wiesbaden, died 21 June 1929 in Zurich) was a German and Swiss mathematician and historian of mathematics.. Education and career Rudio's father and maternal grandfather were both public officials in the independent Duchy of Nassau, which was annexed by Prussia when Rudio was 10. He was educated at the local gymnasium and Realgymnasium in Wiesbaden, and then in 1874 began studying at ETH Zurich, then known as the Eidgenössische Polytechnikum Zürich. His initial courses in Zurich were in civil engineering, but in his second year (under the influence of Karl Geiser) he switched to mathematics and physics. Finishing at Zurich in 1877, he went on to graduate studies at the University of Berlin from 1877 to 1880, earning his Ph.D. under the joint supervision of Ernst Kummer and Karl Weierstrass. Next, Rudio returned to ETH Zurich, earning his habilitation in 1881 and becoming at that time a privatdozent. He became an extraordinary professor at Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convergence (math)
In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. In formulas, a limit of a function is usually written as : \lim_ f(x) = L, (although a few authors may use "Lt" instead of "lim") and is read as "the limit of of as approaches equals ". The fact that a function approaches the limit as approaches is sometimes denoted by a right arrow (→ or \rightarrow), as in :f(x) \to L \text x \to c, which reads "f of x tends to L as x tends to c". History Grégoire de Saint-Vincent gave the first definition of limit (terminus) of a geometric series in his work ''Opus Geometricum'' (1647): "The ''terminus'' of a pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rademacher System
Rademacher is an occupational surname of German origin, which means "wheelmaker". It may refer to: People * Arthur Rademacher (1889–1981), Australian football player *Autumn Rademacher (born 1975), American basketball coach *Bill Rademacher (born 1942), American football player * Debbie Rademacher (born 1966), American soccer player *Erich Rademacher (1901–1979), German swimmer *Franz Rademacher (1906–1973), German diplomat *Hans Rademacher (1892–1969), German-born American mathematician *Ingo Rademacher (born 1971), Australian actor *Isaac Rademacher (born 1977), American soldier *Joachim Rademacher (1906–1970), German water polo player *Joseph Rademacher (bishop) (1840–1900), American bishop *Joseph Rademacher (soldier) (born 1985), American soldier * Mark Rademacher (1963–1983), American soldier *Pete Rademacher (1928-2020), American boxer *Rudolf Rademacher (1913–1953), German pilot Other uses *House of Rademacher, German noble family *Rademacher (band) *Rademac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., an integral assigns numbers to functions in a way that describes Displacement (geometry), displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with Derivative, differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dispersion Relation
In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the phase velocity and group velocity of waves in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency dependence of wave propagation and attenuation. Dispersion may be caused either by geometric boundary conditions (waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles, considered as matter waves, have a nontrivial dispersion relation even in the absence of geometric constraints and other media. In the presence of dispersion, wave velocity is no longer uniquely defined, giving rise to the distinction of phase ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ludolph Van Ceulen
Ludolph van Ceulen (, ; 28 January 1540 – 31 December 1610) was a German-Dutch mathematician from Hildesheim. He emigrated to the Netherlands. Biography Van Ceulen moved to Delft most likely in 1576 to teach fencing and mathematics and in 1594 opened a fencing school in Leiden. In 1600 he was appointed the first professor of mathematics at the Engineering School, Duytsche Mathematique, established by Maurice, Prince of Orange, at the relatively new Leiden University. He shared this professorial level at the school with the surveyor and cartographer, , which shows that the intention was to promote practical, rather than theoretical instruction. The curriculum for the new Engineering School was devised by Simon Stevin who continued to act as the personal advisor to the Prince. At first the professors at Leiden refused to accept the status of Van Ceulen and Van Merwen, especially as they taught in Dutch rather than Latin. Theological professors generally believed that practica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sexagesimal
Sexagesimal, also known as base 60 or sexagenary, is a numeral system with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form—for measuring time, angles, and geographic coordinates. The number 60, a superior highly composite number, has twelve factors, namely 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60, of which 2, 3, and 5 are prime numbers. With so many factors, many fractions involving sexagesimal numbers are simplified. For example, one hour can be divided evenly into sections of 30 minutes, 20 minutes, 15 minutes, 12 minutes, 10 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, and 1 minute. 60 is the smallest number that is divisible by every number from 1 to 6; that is, it is the lowest common multiple of 1, 2, 3, 4, 5, and 6. ''In this article, all sexagesimal digits are represented as decimal numbers, except where otherwise noted. For e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jamshīd Al-Kāshī
Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) ( fa, غیاث الدین جمشید کاشانی ''Ghiyās-ud-dīn Jamshīd Kāshānī'') (c. 1380 Kashan, Iran – 22 June 1429 Samarkand, Transoxania) was a Persian astronomer and mathematician during the reign of Tamerlane. Much of al-Kāshī's work was not brought to Europe, and still, even the extant work, remains unpublished in any form. Biography Al-Kashi was born in 1380, in Kashan, in central Iran. This region was controlled by Tamerlane, better known as Timur. The situation changed for the better when Timur died in 1405, and his son, Shah Rokh, ascended into power. Shah Rokh and his wife, Goharshad, a Turkish princess, were very interested in the sciences, and they encouraged their court to study the various fields in great depth. Consequently, the period of their power became one of many scholarly accomplishments. This was the perfect environment for al-Kashi to begin his career as one of the worl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics In Medieval Islam
Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built on Greek mathematics (Euclid, Archimedes, Apollonius of Perga, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important progress was made, such as full development of the decimal place-value system to include decimal fractions, the first systematised study of algebra, and advances in geometry and trigonometry. Arabic works played an important role in the transmission of mathematics to Europe during the 10th—12th centuries. Concepts Algebra The study of algebra, the name of which is derived from the Arabic language, Arabic word meaning completion or "reunion of broken parts", flourished during the Islamic golden age. Muhammad ibn Musa al-Khwarizmi, a Persian scholar in the House of Wisdom in Baghdad was the founder of algebra, is along with the Greek people, Greek mathematician Diophantus, known as the father of algebra. In his book ''The Compendious Book on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decimal Digit
A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin ''digiti'' meaning fingers) of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal (ancient Latin adjective ''decem'' meaning ten) digits. For a given numeral system with an integer base, the number of different digits required is given by the absolute value of the base. For example, the decimal system (base 10) requires ten digits (0 through to 9), whereas the binary system (base 2) requires two digits (0 and 1). Overview In a basic digital system, a numeral is a sequence of digits, which may be of arbitrary length. Each position in the sequence has a place value, and each digit has a value. The value of the numeral is computed by multiplying each digit in the sequence by its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]