HOME
*





Verifiable Secret Sharing
In cryptography, a secret sharing scheme is verifiable if auxiliary information is included that allows players to verify their shares as consistent. More formally, verifiable secret sharing ensures that even if the dealer is malicious there is a well-defined secret that the players can later reconstruct. (In standard secret sharing, the dealer is assumed to be honest.) The concept of verifiable secret sharing (VSS) was first introduced in 1985 by Benny Chor, Shafi Goldwasser, Silvio Micali and Baruch Awerbuch. In a VSS protocol a distinguished player who wants to share the secret is referred to as the dealer. The protocol consists of two phases: a sharing phase and a reconstruction phase. Sharing: Initially the dealer holds secret as input and each player holds an independent random input. The sharing phase may consist of several rounds. At each round each player can privately send messages to other players and can also broadcast a message. Each message sent or broadcast by a pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verifiable Computing
Verifiable computing (or verified computation or verified computing) enables a computer to offload the computation of some function, to other perhaps untrusted clients, while maintaining verifiable results. The other clients evaluate the function and return the result with a proof that the computation of the function was carried out correctly. The introduction of this notion came as a result of the increasingly common phenomenon of "outsourcing" computation to untrusted users in projects such as SETI@home and also to the growing desire of weak clients to outsource computational tasks to a more powerful computation service like in cloud computing. The concept dates back to work by Babai et al., and has been studied under various terms, including "checking computations" (Babai et al.), "delegating computations", "certified computation", and verifiable computing. The term ''verifiable computing'' itself was formalized by Rosario Gennaro, Craig Gentry, and Bryan Parno, and echoes Mic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Publicly Verifiable Secret Sharing
In cryptography, a secret sharing scheme is publicly verifiable (PVSS) if it is a verifiable secret sharing scheme and if any party (not just the participants of the protocol) can verify the validity of the shares distributed by the dealer. The method introduced here according to the paper bChunming Tang, Dingyi Pei, Zhuo Liu, and Yong Heis non-interactive and maintains this property throughout the protocol. Initialization The PVSS scheme dictates an initialization process in which: #All system parameters are generated. #Each participant must have a registered public key. Excluding the initialization process, the PVSS consists of two phases: Distribution 1. Distribution of secret s shares is performed by the dealer D, which does the following: * The dealer creates s_,s_...s_ for each participant P_,P_...P_ respectively. * The dealer publishes the encrypted share E_(s_) for each P_. * The dealer also publishes a string \mathrm_ to show that each E_ encrypts s_ (note: \mathrm_ gua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secure Multiparty Computation
Secure multi-party computation (also known as secure computation, multi-party computation (MPC) or privacy-preserving computation) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants (an eavesdropper on the sender and receiver), the cryptography in this model protects participants' privacy from each other. The foundation for secure multi-party computation started in the late 1970s with the work on mental poker, cryptographic work that simulates game playing/computational tasks over distances without requiring a trusted third party. Note that traditionally, cryptography was about concealing content, while this new type of computation and protocol is about concealing partial information about data while comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




End-to-end Auditable Voting Systems
End-to-end auditable or end-to-end voter verifiable (E2E) systems are voting systems with stringent integrity properties and strong tamper resistance. E2E systems often employ cryptographic methods to craft receipts that allow voters to verify that their votes were counted as cast, without revealing which candidates were voted for. As such, these systems are sometimes referred to as receipt-based systems. Overview Electronic voting systems arrive at their final vote totals by a series of steps: # each voter has an original intent, # voters express their intent on ballots (whether interactively, as on the transient display of a DRE voting machine, or durable, as in systems with voter verifiable paper trails), # the ballots are interpreted, to generate electronic cast vote records, # cast vote records are tallied, generating totals # where counting is conducted locally, for example, at the precinct or county level, the results from each local level are combined to produce the fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Homomorphism
In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if and are algebras over a field (or commutative ring) , it is a function F\colon A\to B such that for all in and in , * F(kx) = kF(x) * F(x + y) = F(x) + F(y) * F(xy) = F(x) F(y) The first two conditions say that is a ''K''-linear map (or ''K''-module homomorphism if ''K'' is a commutative ring), and the last condition says that is a (non-unital) ring homomorphism. If admits an inverse homomorphism, or equivalently if it is bijective, is said to be an isomorphism between and . Unital algebra homomorphisms If ''A'' and ''B'' are two unital algebras, then an algebra homomorphism F:A\rightarrow B is said to be ''unital'' if it maps the unity of ''A'' to the unity of ''B''. Often the words "algebra homomorphism" are actually used to mean "unital algebra homomorphism", in which case non-unital algebra homomorphisms are excluded. A unital algebra homomorphism is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Interpolation
In numerical analysis, polynomial interpolation is the interpolation of a given data set by the polynomial of lowest possible degree that passes through the points of the dataset. Given a set of data points (x_0,y_0), \ldots, (x_n,y_n), with no two x_j the same, a polynomial function p(x) is said to interpolate the data if p(x_j)=y_j for each j\in\. Two common explicit formulas for this polynomial are the Lagrange polynomials and Newton polynomials. Applications Polynomials can be used to approximate complicated curves, for example, the shapes of letters in typography, given a few points. A relevant application is the evaluation of the natural logarithm and trigonometric functions: pick a few known data points, create a lookup table, and interpolate between those data points. This results in significantly faster computations. Polynomial interpolation also forms the basis for algorithms in numerical quadrature and numerical ordinary differential equations and Secure Multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Group Of Integers Modulo N
In modular arithmetic, the integers coprime (relatively prime) to ''n'' from the set \ of ''n'' non-negative integers form a group under multiplication modulo ''n'', called the multiplicative group of integers modulo ''n''. Equivalently, the elements of this group can be thought of as the congruence classes, also known as ''residues'' modulo ''n'', that are coprime to ''n''. Hence another name is the group of primitive residue classes modulo ''n''. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo ''n''. Here ''units'' refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to ''n''. This quotient group, usually denoted (\mathbb/n\mathbb)^\times, is fundamental in number theory. It is used in cryptography, integer factorization, and primality testing. It is an abelian, finite group whose order is given by Euler's totient function: , (\mathbb/n\mathbb)^\times, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Secret Sharing
Secret sharing (also called secret splitting) refers to methods for distributing a secret among a group, in such a way that no individual holds any intelligible information about the secret, but when a sufficient number of individuals combine their 'shares', the secret may be reconstructed. Whereas ''insecure'' secret sharing allows an attacker to gain more information with each share, ''secure'' secret sharing is 'all or nothing' (where 'all' means the necessary number of shares). In one type of secret sharing scheme there is one ''dealer'' and ''n'' ''players''. The dealer gives a share of the secret to the players, but only when specific conditions are fulfilled will the players be able to reconstruct the secret from their shares. The dealer accomplishes this by giving each player a share in such a way that any group of ''t'' (for ''threshold'') or more players can together reconstruct the secret but no group of fewer than ''t'' players can. Such a system is called a -threshol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Logarithm
In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b''''k'' can be defined for all integers ''k'', and the discrete logarithm log''b'' ''a'' is an integer ''k'' such that . In number theory, the more commonly used term is index: we can write ''x'' = ind''r'' ''a'' (mod ''m'') (read "the index of ''a'' to the base ''r'' modulo ''m''") for ''r''''x'' ≡ ''a'' (mod ''m'') if ''r'' is a primitive root of ''m'' and gcd(''a'',''m'') = 1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. Several important algorithms in public-key cryptography, such as ElGamal base their security on the assumption that the discrete logarithm problem over carefully chosen groups has no efficient solution. Definition Let ''G'' be any group. Denote its group operation by mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]