Vandermonde Determinant
   HOME
*





Vandermonde Determinant
In algebra, the Vandermonde polynomial of an ordered set of ''n'' variables X_1,\dots, X_n, named after Alexandre-Théophile Vandermonde, is the polynomial: :V_n = \prod_ (X_j-X_i). (Some sources use the opposite order (X_i-X_j), which changes the sign \binom times: thus in some dimensions the two formulas agree in sign, while in others they have opposite signs.) It is also called the Vandermonde determinant, as it is the determinant of the Vandermonde matrix. The value depends on the order of the terms: it is an alternating polynomial, not a symmetric polynomial. Alternating The defining property of the Vandermonde polynomial is that it is ''alternating'' in the entries, meaning that permuting the X_i by an odd permutation changes the sign, while permuting them by an even permutation does not change the value of the polynomial – in fact, it is the basic alternating polynomial, as will be made precise below. It thus depends on the order, and is zero if two entries are equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Polynomials
In algebra, an alternating polynomial is a polynomial f(x_1,\dots,x_n) such that if one switches any two of the variables, the polynomial changes sign: :f(x_1,\dots,x_j,\dots,x_i,\dots,x_n) = -f(x_1,\dots,x_i,\dots,x_j,\dots,x_n). Equivalently, if one permutes the variables, the polynomial changes in value by the sign of the permutation: :f\left(x_,\dots,x_\right)= \mathrm(\sigma) f(x_1,\dots,x_n). More generally, a polynomial f(x_1,\dots,x_n,y_1,\dots,y_t) is said to be ''alternating in'' x_1,\dots,x_n if it changes sign if one switches any two of the x_i, leaving the y_j fixed. Relation to symmetric polynomials Products of symmetric and alternating polynomials (in the same variables x_1,\dots,x_n) behave thus: * the product of two symmetric polynomials is symmetric, * the product of a symmetric polynomial and an alternating polynomial is alternating, and * the product of two alternating polynomials is symmetric. This is exactly the addition table for parity, with "symmetric" co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Capelli Polynomial
Capelli is an Italian surname meaning hair (plural). Notable people with the surname include: *Adler Capelli (born 1973), Italian former track cyclist *Alfredo Capelli (1855–1910), Italian mathematician *Andy Capelli, fictional character on ''General Hospital'' * Ather Capelli (1902–1944), Italian journalist * Camillo Capelli, also called Camillo Mantovano, (active 16th century), Italian painter of the Renaissance period * Claudio Capelli (born 1986), Swiss artistic gymnast * Daniele Capelli (born 1986), Italian footballer *Ermanno Capelli (born 1985), Italian professional road racing cyclist *Francis Alphonse Capelli the real name of Frank A. Capell (1907–1980), American author and essayist *Francesco Capelli (active c. 1568), Italian painter * Ivan Capelli (born 1963), Italian former Formula One driver *Javier Capelli (born 1985), Argentine footballer *Joseph Capelli, fictional character in Resistance, and main protagonist in ''Resistance 3 '' *Monia Capelli (born 1969), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trivial Representation
In the mathematical field of representation theory, a trivial representation is a representation of a group ''G'' on which all elements of ''G'' act as the identity mapping of ''V''. A trivial representation of an associative or Lie algebra is a (Lie) algebra representation for which all elements of the algebra act as the zero linear map (endomorphism) which sends every element of ''V'' to the zero vector. For any group or Lie algebra, an irreducible trivial representation always exists over any field, and is one-dimensional, hence unique up to isomorphism. The same is true for associative algebras unless one restricts attention to unital algebras and unital representations. Although the trivial representation is constructed in such a way as to make its properties seem tautologous, it is a fundamental object of the theory. A subrepresentation is equivalent to a trivial representation, for example, if it consists of invariant vectors; so that searching for such subrepresentatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Denominator Formula
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by . There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula. By definition, the character \chi of a representation \pi of ''G'' is the trace of \pi(g), as a function of a group element g\in G. The irreducible representations in this case are all finite-dimensional (this is part of the Peter–Weyl theorem); so the notion of trace is the usual one from linear algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Character Formula
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by . There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula. By definition, the character \chi of a representation \pi of ''G'' is the trace of \pi(g), as a function of a group element g\in G. The irreducible representations in this case are all finite-dimensional (this is part of the Peter–Weyl theorem); so the notion of trace is the usual one from linear alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves variables, they may also be called parameters. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. The constant coefficient is the coefficient not attached to variables in an expression. For example, the constant coefficients of the expressions above are the number 3 and the parameter ''c'', respectively. The coefficient attached to the highest degree of the variable in a polynomial is referred to as the leading coefficient. For example, in the expressions above, the leading coefficients are 2 and ''a'', respectively. Terminology and definition In mathematics, a coefficient is a multiplicative factor in some term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monic Polynomial
In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form: :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0 Univariate polynomials If a polynomial has only one indeterminate ( univariate polynomial), then the terms are usually written either from highest degree to lowest degree ("descending powers") or from lowest degree to highest degree ("ascending powers"). A univariate polynomial in ''x'' of degree ''n'' then takes the general form displayed above, where : ''c''''n'' ≠ 0, ''c''''n''−1, ..., ''c''2, ''c''1 and ''c''0 are constants, the coefficients of the polynomial. Here the term ''c''''n''''x''''n'' is called the ''leading term'', and its coefficient ''c''''n'' the ''leading coefficient''; if the leading coefficient , the univariate polynomial is called monic. Properties Multiplicatively closed The s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c\prod_^ (X - a_i) where c\in K and for each i we have X - a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). Properties An extension ''L'' which is a splitting field for a set of polynomials ''p''(''X'') over ''K'' is called a normal extension of ''K''. Given an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]