Vacuum Expectation Value
In quantum field theory, the vacuum expectation value (VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. In the context of spontaneous symmetry breaking, an operator that has a vanishing expectation value due to symmetry can acquire a nonzero vacuum expectation value during a phase transition. Examples are: *The Higgs field has a vacuum expectation value of 246 GeV. This nonzero value underlies the Higgs mechanism of the Standard Model. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced Fermi constant, and the weak isospin coupling, in natural units. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gluon Condensate
In quantum chromodynamics (QCD), the gluon condensate is a non-perturbative property of the QCD vacuum which could be partly responsible for giving masses to light mesons. If the gluon field tensor is represented as Gμν, then the gluon condensate is the vacuum expectation value \langle G_G^\rangle. It is not clear yet whether this condensate is related to any of the known phase changes in quark matter. There have been scattered studies of other types of gluon condensates, involving a different number of gluon fields. For more on the context in which this quantity occurs, see the article on the QCD vacuum. See also *Quantum chromodynamics *QCD vacuum and chiral condensates * Vacuum in quantum field theory *Quark–gluon plasma *QCD matter Quark matter or QCD matter ( quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wightman Axioms
In mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the early 1950s, but they were first published only in 1964 after Haag–Ruelle scattering theory affirmed their significance. The axioms exist in the context of constructive quantum field theory and are meant to provide a basis for rigorous treatment of quantum fields and strict foundation for the perturbative methods used. One of the Millennium Problems is to realize the Wightman axioms in the case of Yang–Mills fields. Rationale One basic idea of the Wightman axioms is that there is a Hilbert space, upon which the Poincaré group acts unitarily. In this way, the concepts of energy, momentum, angular momentum and center of mass (corresponding to boosts) are implemented. There is also a stability assumption, which restricts the spectru ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vacuum Energy
Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experimentally observed in various phenomena such as spontaneous emission, the Casimir effect, and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales. Using the upper limit of the cosmological constant, the vacuum energy of free space has been estimated to be 10−9 joules (10−2 ergs), or ~5 GeV per cubic meter. However, in quantum electrodynamics, consistency with the principle of Lorentz covariance and with the magnitude of the Planck constant suggests a much larger value of 10113 joules per cubic meter. This huge discrepancy is known as the cosmological constant problem or, colloquially, the "vacuum catastrophe." Origin Quantum field theory states that all fundamental fields, such as the elect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview The spontaneous symmetry breaking cannot happen in quantum mechanics that describes finite dimensional systems, due to Stone-von Neumann theorem (that states the uniqueness of Heisenberg commutation relations in finite dimensions). So spontaneous symmetry breaking can be observed only in infinite dimensional theories, as quantum field theories. By definition, spontaneous symmetry breaking requires the existence of physical laws which are invariant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dark Energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and Baryon#Baryonic matter, ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2. p. 46. Retrieved 7 October 2013, "...dark energy: A smooth, persistent component of invisible energy, thought to make up about 70 percent of the energy density of the universe. Dark energy is smooth because it doesn't accumulate preferentially in galaxi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Symmetry
In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: # A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from sub-atomic particles to entire Galaxy filament, galactic filaments. Since the early 20th century, the field of cosmology establishes that space and time emerged together at the Big Bang ago and that the Expansion of the universe, universe has been expanding since then. The observable universe, portion of the universe that can be seen by humans is approximately 93 billion light-years in diameter at present, but the total size of the universe is not known. Some of the earliest Timeline of cosmological theories, cosmological models of the universe were developed by ancient Greek philosophy, ancient Greek and Indian philosophy, Indian philosophers and were geocentric model, geocentric, placing Earth at the center. Over the centuries, more prec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string acts like a particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and condensed matter ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Field
In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in material object, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a magnitude and a direction, like velocity), a tensor field is a generalization of a ''scalar field'' and a ''vector field'' that assigns, respectively, a scalar or vector to each point of space. If a tensor is defined on a vector fields set over a module , we call a tensor field on . A tensor field, in common usage, is often referred to in the shorter form "tensor". For example, the ''Riemann curvature tensor'' refers a tensor ''field'', as it associates a tensor to each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and all composite particles made of an even and odd, odd number of these, such as all baryons and many atoms and atomic nucleus, nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in Theory of relativity, relativistic quantum field theory, particles with integer Spin (physics), spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |