HOME
*





Unknotting Problem
In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some representation of a knot, e.g., a knot diagram. There are several types of unknotting algorithms. A major unresolved challenge is to determine if the problem admits a polynomial time algorithm; that is, whether the problem lies in the complexity class P. Computational complexity First steps toward determining the computational complexity were undertaken in proving that the problem is in larger complexity classes, which contain the class P. By using normal surfaces to describe the Seifert surfaces of a given knot, showed that the unknotting problem is in the complexity class NP. claimed the weaker result that unknotting is in AM ∩ co-AM; however, later they retracted this claim. In 2011, Greg Kuperberg proved that (assuming the generalized Riemann hypothesis) the unknotting problem is in co-NP, and in 2016, Marc Lackenby provided an unconditional pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension, including the three-dimensional space and the '' Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as evident (for example, there is exactly one straight line passing through two points), or seemed impossible to prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrization Conjecture
In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries ( Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by , and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that Haken manifolds satisfy the geometrization conjecture. Thurston announced a proof in the 1980s and since then s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Knot Group
In mathematics, a knot (mathematics), knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot ''K'' is defined as the fundamental group of the knot complement of ''K'' in R3, :\pi_1(\mathbb^3 \setminus K). Other conventions consider knots to be embedded in the 3-sphere, in which case the knot group is the fundamental group of its complement in S^3. Properties Two equivalent knots have isomorphic knot groups, so the knot group is a knot invariant and can be used to distinguish between certain pairs of inequivalent knots. This is because an equivalence between two knots is a self-homeomorphism of \mathbb^3 that is isotopic to the identity and sends the first knot onto the second. Such a homeomorphism restricts onto a homeomorphism of the complements of the knots, and this restricted homeomorphism induces an isomorphism of fundamental groups. However, it is possible for two inequivalent knots to have isomorphic knot groups (see below for an exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residually Finite
{{unsourced, date=September 2022 In the mathematical field of group theory, a group ''G'' is residually finite or finitely approximable if for every element ''g'' that is not the identity in ''G'' there is a homomorphism ''h'' from ''G'' to a finite group, such that :h(g) \neq 1.\, There are a number of equivalent definitions: *A group is residually finite if for each non-identity element in the group, there is a normal subgroup of finite index not containing that element. *A group is residually finite if and only if the intersection of all its subgroups of finite index is trivial. *A group is residually finite if and only if the intersection of all its normal subgroups of finite index is trivial. *A group is residually finite if and only if it can be embedded inside the direct product of a family of finite groups. Examples Examples of groups that are residually finite are finite groups, free groups, finitely generated nilpotent groups, polycyclic-by-finite groups, f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid Torus
In mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product S^1 \times D^2 of the disk and the circle, endowed with the product topology. A standard way to visualize a solid torus is as a toroid, embedded in 3-space. However, it should be distinguished from a torus, which has the same visual appearance: the torus is the two-dimensional space on the boundary of a toroid, while the solid torus includes also the compact interior space enclosed by the torus. Topological properties The solid torus is a connected, compact, orientable 3-dimensional manifold with boundary. The boundary is homeomorphic to S^1 \times S^1, the ordinary torus. Since the disk D^2 is contractible, the solid torus has the homotopy type of a circle, S^1.. Therefore the fundamental group and homology groups are isomorphic to those of the circle: \begin \pi_1\left(S^1 \times D^2\right) &\cong \pi_1\left(S^1\right) \cong \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pachner Moves
In topology, a branch of mathematics, Pachner moves, named after Udo Pachner, are ways of replacing a triangulation of a piecewise linear manifold by a different triangulation of a homeomorphic manifold. Pachner moves are also called bistellar flips. Any two triangulations of a piecewise linear manifold are related by a finite sequence of Pachner moves. Definition Let \Delta_ be the (n+1)- simplex. \partial \Delta_ is a combinatorial ''n''-sphere with its triangulation as the boundary of the ''n+1''-simplex. Given a triangulated piecewise linear (PL) ''n''-manifold N, and a co-dimension ''0'' subcomplex C \subset N together with a simplicial isomorphism \phi : C \to C' \subset \partial \Delta_, the Pachner move on ''N'' associated to ''C'' is the triangulated manifold (N \setminus C) \cup_\phi (\partial \Delta_ \setminus C'). By design, this manifold is PL-isomorphic to N but the isomorphism does not preserve the triangulation. See also * Flip graph * Unknotting problem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Knot Complement
In mathematics, the knot complement of a tame knot ''K'' is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that ''K'' is a knot in a three-manifold ''M'' (most often, ''M'' is the 3-sphere). Let ''N'' be a tubular neighborhood of ''K''; so ''N'' is a solid torus. The knot complement is then the complement of ''N'', :X_K = M - \mbox(N). The knot complement ''XK'' is a compact 3-manifold; the boundary of ''XK'' and the boundary of the neighborhood ''N'' are homeomorphic to a two-torus. Sometimes the ambient manifold ''M'' is understood to be 3-sphere. Context is needed to determine the usage. There are analogous definitions of link complement. Many knot invariants, such as the knot group, are really invariants of the complement of the knot. When the ambient space is the three-sphere no information is lost: the Gordon–Luecke theorem state ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reidemeister Move
Kurt Werner Friedrich Reidemeister (13 October 1893 – 8 July 1971) was a mathematician born in Braunschweig (Brunswick), Germany. Life He was a brother of Marie Neurath. Beginning in 1912, he studied in Freiburg, Munich, Marburg, and Göttingen. In 1920, he got the staatsexamen (master's degree) in mathematics, philosophy, physics, chemistry, and geology. He received his doctorate in 1921 with a thesis in algebraic number theory at the University of Hamburg under the supervision of Erich Hecke. He became interested in differential geometry; he edited Wilhelm Blaschke's 2nd volume about that issue, and both made an acclaimed contribution to the Jena DMV conference in Sep 1921. In October 1922 (or 1923) he was appointed assistant professor at the University of Vienna. While there he became familiar with the work of Wilhelm Wirtinger on knot theory, and became closely connected to Hans Hahn and the Vienna Circle. Its manifesto (1929) lists one of Reidemeister's publications i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Braid Foliation
A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-stranded structure. More complex patterns can be constructed from an arbitrary number of strands to create a wider range of structures (such as a fishtail braid, a five-stranded braid, rope braid, a French braid and a waterfall braid). The structure is usually long and narrow with each component strand functionally equivalent in zigzagging forward through the overlapping mass of the others. It can be compared with the process of weaving, which usually involves two separate perpendicular groups of strands ( warp and weft). Historically, the materials used have depended on the indigenous plants and animals available in the local area. During the Industrial Revolution, mechanized braiding equipment was invented to increase production. The braiding t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Enumeration Problem
In mathematics, the vertex enumeration problem for a polytope, a polyhedral cell complex, a hyperplane arrangement, or some other object of discrete geometry, is the problem of determination of the object's vertices given some formal representation of the object. A classical example is the problem of enumeration of the vertices of a convex polytope specified by a set of linear inequalities: :Ax \leq b where ''A'' is an ''m''×''n'' matrix, ''x'' is an ''n''×1 column vector of variables, and ''b'' is an ''m''×1 column vector of constants. The inverse ( dual) problem of finding the bounding inequalities given the vertices is called '' facet enumeration'' (see convex hull algorithms). Computational complexity The computational complexity of the problem is a subject of research in computer science. For unbounded polyhedra, the problem is known to be NP-hard, more precisely, there is no algorithm that runs in polynomial time in the combined input-output size, unless P=NP. A 1992 a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]