Universal Homeomorphism
   HOME
*





Universal Homeomorphism
In algebraic geometry, a universal homeomorphism is a morphism of schemes f: X \to Y such that, for each morphism Y' \to Y, the base change X \times_Y Y' \to Y' is a homeomorphism of topological spaces. A morphism of schemes is a universal homeomorphism if and only if it is integral element#Integral morphisms, integral, radicial morphism, radicial and surjective.EGA IV4, 18.12.11. In particular, a morphism of locally of finite type is a universal homeomorphism if and only if it is finite morphism, finite, radicial and surjective. For example, an absolute Frobenius morphism is a universal homeomorphism. References * External links Universal homeomorphisms and the étale topologyDo pushouts along universal homeomorphisms exist?
{{algebraic-geometry-stub Homeomorphisms Morphisms of schemes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Schemes
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. Definition By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties). Let ƒ:''X''→''Y'' be a morphism of schemes. If ''x'' is a point of ''X'', since ƒ is continuous, there are open affine subsets ''U'' = Spec ''A'' of ''X'' containing ''x'' and ''V'' = Spec ''B'' of ''Y'' such that ƒ(''U'') ⊆ ''V''. Then ƒ: ''U'' → ''V'' is a morphism of affine schemes and thus is induced by some ring homomorphism ''B'' → ''A'' (cf. #Affine case.) In fact, one can use this description to "define" a morphism of schemes; o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Element
In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a''''j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' is a root of a monic polynomial over ''A''. The set of elements of ''B'' that are integral over ''A'' is called the integral closure of ''A'' in ''B''. It is a subring of ''B'' containing ''A''. If every element of ''B'' is integral over ''A'', then we say that ''B'' is integral over ''A'', or equivalently ''B'' is an integral extension of ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and of an "integral extension" are precisely " algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., \sqrt or 1+i); in this context, the integral elements are usu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radicial Morphism
In algebraic geometry, a morphism of schemes :''f'': ''X'' → ''Y'' is called radicial or universally injective, if, for every field ''K'' the induced map ''X''(''K'') → ''Y''(''K'') is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for ''K'' algebraically closed. This is equivalent to the following condition: ''f'' is injective on the topological spaces and for every point ''x'' in ''X'', the extension of the residue fields :''k''(''f''(''x'')) ⊂ ''k''(''x'') is radicial, i.e. purely inseparable. It is also equivalent to every base change of ''f'' being injective on the underlying topological spaces. (Thus the term ''universally injective''.) Radicial morphisms are stable under composition, products and base change. If ''gf'' is radicial, so is ''f''. References * , section ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Morphism
In algebraic geometry, a finite morphism between two affine varieties In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime idea ... X, Y is a dense Regular map (algebraic geometry), regular map which induces isomorphic inclusion k\left[Y\right]\hookrightarrow k\left[X\right] between their Coordinate ring, coordinate rings, such that k\left[X\right] is integral over k\left[Y\right]. This definition can be extended to the quasi-projective varieties, such that a Regular map (algebraic geometry), regular map f\colon X\to Y between quasiprojective varieties is finite if any point like y\in Y has an affine neighbourhood V such that U=f^(V) is affine and f\colon U\to V is a finite map (in view of the previous definition, because it is between affine varieties). Definition by Schemes A morphism ''f'': ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Frobenius Morphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Ther ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphisms
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]