Uncertain Inference
   HOME
*





Uncertain Inference
Uncertain inference was first described by C. J. van Rijsbergen as a way to formally define a query and document relationship in Information retrieval. This formalization is a logical implication with an attached measure of uncertainty. Definitions Rijsbergen proposes that the measure of uncertainty of a document ''d'' to a query ''q'' be the probability of its logical implication, i.e.: :P(d \to q) A user's query can be interpreted as a set of assertions about the desired document. It is the system's task to infer, given a particular document, if the query assertions are true. If they are, the document is retrieved. In many cases the contents of documents are not sufficient to assert the queries. A knowledge base of facts and rules is needed, but some of them may be uncertain because there may be a probability associated to using them for inference. Therefore, we can also refer to this as ''plausible inference''. The plausibility of an inference d \to q is a function of the pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Retrieval
Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; stores and manages those documents. Web search engines are the most visible IR applications. Overview An information retrieval process begins when a user or searcher enters a query into the system. Queries are formal statements of information needs, for example search strings in web search engines. In inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markov Logic Network
A Markov logic network (MLN) is a probabilistic logic which applies the ideas of a Markov network to first-order logic, enabling uncertain inference. Markov logic networks generalize first-order logic, in the sense that, in a certain limit, all unsatisfiable statements have a probability of zero, and all tautologies have probability one. History Work in this area began in 2003 by Pedro Domingos and Matt Richardson, and they began to use the term MLN to describe it. Description Briefly, it is a collection of formulas from first-order logic, to each of which is assigned a real number, the weight. Taken as a Markov network, the vertices of the network graph are atomic formulas, and the edges are the logical connectives used to construct the formula. Each formula is considered to be a clique, and the Markov blanket is the set of formulas in which a given atom appears. A potential function is associated to each formula, and takes the value of one when the formula is true, and zero when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imprecise Probability
Imprecise probability generalizes probability theory to allow for partial probability specifications, and is applicable when information is scarce, vague, or conflicting, in which case a unique probability distribution may be hard to identify. Thereby, the theory aims to represent the available knowledge more accurately. Imprecision is useful for dealing with expert elicitation, because: * People have a limited ability to determine their own subjective probabilities and might find that they can only provide an interval. * As an interval is compatible with a range of opinions, the analysis ought to be more convincing to a range of different people. Introduction Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, Laplace, de Finetti, Ramsey, Cox, Lindley, and many others. However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plausible Reasoning
Plausible reasoning is a method of deriving new conclusions from given known premises, a method different from the classical syllogistic argumentation methods of Aristotelian two-valued logic. The syllogistic style of argumentation is illustrated by the oft-quoted argument "All men are mortal, Socrates is a man, and therefore, Socrates is mortal." In contrast, consider the statement "if it is raining then it is cloudy." The only logical inference that one can draw from this is that "if it is not cloudy then it is not raining." But ordinary people in their everyday lives would conclude that "if it is not raining then being cloudy is less plausible," or "if it is cloudy then rain is more plausible." The unstated and unconsciously applied reasoning, arguably incorrect, that made people come to their conclusions is typical of plausible reasoning. As another example, look at this scenario: "Suppose some dark night a policeman walks down a street, apparently deserted; but suddenly he hear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fuzzy Logic
Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1. The term ''fuzzy logic'' was introduced with the 1965 proposal of fuzzy set theory by Iranian Azerbaijani mathematician Lotfi Zadeh. Fuzzy logic had, however, been studied since the 1920s, as infinite-valued logic—notably by Łukasiewicz and Tarski. Fuzzy logic is based on the observation that people make decisions based on imprecise and non-numerical information. Fuzzy models or sets are mathematical means of representing vagueness and imprecise information (hence the term fuzzy). These models have the capability of recognising, representing, manipulating, interpreting, and using data and information that are vague and lack ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite State Machine
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of '' states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximum Entropy Principle
The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information). Another way of stating this: Take precisely stated prior data or testable information about a probability distribution function. Consider the set of all trial probability distributions that would encode the prior data. According to this principle, the distribution with maximal information entropy is the best choice. History The principle was first expounded by E. T. Jaynes in two papers in 1957 where he emphasized a natural correspondence between statistical mechanics and information theory. In particular, Jaynes offered a new and very general rationale why the Gibbsian method of statistical mechanics works. He argued that the entropy of statistical mechanics and the information entropy of informatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Logic Network
A probabilistic logic network (PLN) is a conceptual, mathematical, and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of autoepistemic logic, crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abductive reasoning, abduction, analogy, fuzziness and speculation, and reasoning about time and causality. PLN was developed by Ben Goertzel, Mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional Probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A: P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]