Upsilon Meson
The Upsilon meson () is a quarkonium state (i.e. flavourless meson) formed from a bottom quark and its antiparticle. It was discovered by the E288 experiment team, headed by Leon Lederman, at Fermilab in 1977, and was the first particle containing a bottom quark to be discovered because it is the lightest that can be produced without additional massive particles. It has a lifetime of and a mass about in the ground state. See also * Oops-Leon, an erroneously-claimed discovery of a similar particle at a lower mass in 1976. * The particle is the analogous state made from strange quarks. * The particle is the analogous state made from charm quarks. * List of mesons :''This list is of all known and predicted scalar, pseudoscalar and vector mesons. See list of particles for a more detailed list of particles found in particle physics.'' This article contains a list of mesons, unstable subatomic particles com ... References * * * Mesons Onia Subatomic particles with sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upsilon Peak
Upsilon (, ; uppercase Υ, lowercase υ; el, ''ýpsilon'' ) or ypsilon is the 20th letter of the Greek alphabet. In the system of Greek numerals, grc, Υʹ, label=none has a value of 400. It is derived from the phoenician alphabet, Phoenician Waw (letter), waw . Etymology The name of the letter was originally just "υ" (''y;'' also called ''hy'', hence "Hyoid bone, hyoid", meaning "shaped like the letter υ"), but the name changed to "υ ψιλόν" ''u psilon'' 'simple u' to distinguish it from οι, which had come to have the same pronunciation. Pronunciation In early Attic Greek (6th century BCE), it was pronounced (a close back rounded vowel like the English "long o͞o"). In Ancient Greek language, Classical Greek, it was pronounced (a close front rounded vowel), at least until 1030. In Modern Greek, it is pronounced ; in the digraph (orthography), digraphs and , as or ; and in the digraph as . In ancient Greek, it occurred in both Ancient Greek phonology#Vo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Antiparticle
In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron. Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle partners, one is designated as the normal particle (the one that occurs in matter usually interacted with in daily life). The other (usually given the prefix "anti-") is designated the ''antiparticle''. Particle–antiparticle pairs can annihilate each other, producing photons; since the charges of the particle and antiparticle are opposite, total charge is conserved. For example, the posit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mesons
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons. Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles. Higher-energy (more massive) mes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics Letters B
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Data Group
The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical results that are phenomenologically relevant, including those in related fields such as cosmology. The PDG currently publishes the ''Review of Particle Physics'' and its pocket version, the ''Particle Physics Booklet'', which are printed biennially as books, and updated annually via the World Wide Web. In previous years, the PDG has published the ''Pocket Diary for Physicists'', a calendar with the dates of key international conferences and contact information of major high energy physics institutions, which is now discontinued. PDG also further maintains the standard numbering scheme for particles in event generators, in association with the event generator authors. ''Review of Particle Physics'' The ''Review of Particle Physics'' (former ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AIP Conference Proceedings
''AIP Conference Proceedings'' is a serial published by the American Institute of Physics since 1970. It publishes the proceedings from various conferences of physics societies. Alison Waldron is the current Acquisitions Editor for ''AIP Conference Proceedings''. In addition to the series' own ISSN, each volumes receives its own ISBN. ''AIP Conference Proceedings'' publishes more than 100 volumes per year, with back-file coverage to 1970 which encompasses 1,330 proceedings volumes and 100,000 published papers. Scope In 2010 broad subject coverage included accelerators, biophysics, plasma physics, geophysics, polymer science, optics, lasers, nanotechnology, materials science, astronomy, astrophysics, mathematical physics, nuclear and particle physics, statistical physics, atomic and molecular physics. Abstracting and indexing This series is indexed in the following databases, amongst others *Academic Search Premier *Scitation *Scopus Scopus is Elsevier's abstract and c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Mesons
:''This list is of all known and predicted scalar, pseudoscalar and vector mesons. See list of particles for a more detailed list of particles found in particle physics.'' This article contains a list of mesons, unstable subatomic particles composed of one quark and one antiquark. They are part of the hadron particle family—particles made of quarks. The other members of the hadron family are the baryons—subatomic particles composed of three quarks. The main difference between mesons and baryons is that mesons have integer spin (thus are bosons) while baryons are fermions (half-integer spin). Because mesons are bosons, the Pauli exclusion principle does not apply to them. Because of this, they can act as force mediating particles on short distances, and thus play a part in processes such as the nuclear interaction. Since mesons are composed of quarks, they participate in both the weak and strong interactions. Mesons with net electric charge also participate in the electro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charm Quark
The charm quark, charmed quark or c quark (from its symbol, c) is the third-most massive of all quarks, a type of elementary particle. Charm quarks are found in hadrons, which are subatomic particles made of quarks. Examples of hadrons containing charm quarks include the J/ψ meson (), D mesons (), charmed Sigma baryons (), and other charmed particles. It, along with the strange quark, is part of the second generation of matter, and has an electric charge of + ''e'' and a bare mass of . Like all quarks, the charm quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the charm quark is the charm antiquark (sometimes called ''anticharm quark'' or simply ''anticharm''), which differs from it only in that some of its properties have equal magnitude but opposite sign. The existence of a fourth quark had been speculated by a number of autho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strange Quark
The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (), strange D mesons (), Sigma baryons (), and other strange particles. According to the IUPAP, the symbol s is the official name, while "strange" is to be considered only as a mnemonic. The name sideways has also been used because the s quark has an I value of 0 while the u ("up") and d ("down") quarks have values of + and − respectively. Along with the charm quark, it is part of the second generation of matter. It has an electric charge of − ''e'' and a bare mass of . Like all quarks, the strange quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the strange quark is the strange ant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oops-Leon
Oops-Leon is the name given by particle physicists to what was thought to be a new subatomic particle "discovered" at Fermilab in 1976. The E288 experiment team, a group of physicists led by Leon Lederman who worked on the E288 particle detector, announced that a particle with a mass of about 6.0 GeV, which decayed into an electron and a positron, was being produced by the Fermilab particle accelerator. The particle's initial name was the greek letter Upsilon (\Upsilon\,). After taking further data, the group discovered that this particle did not actually exist, and the "discovery" was named "Oops-Leon" as a pun on the original name and the first name of the E288 collaboration leader. The original publication was based on an apparent peak (resonance) in a histogram of the invariant mass of electron-positron pairs produced by protons colliding with a stationary beryllium target, implying the existence of a particle with a mass of 6 GeV which was being produced and decaying ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mean Lifetime
A quantity is subject to exponential decay if it decreases at a rate Proportionality (mathematics), proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and (lambda) is a positive rate called the exponential decay constant, disintegration constant, rate constant, or transformation constant: :\frac = -\lambda N. The solution to this equation (see #Solution_of_the_differential_equation, derivation below) is: :N(t) = N_0 e^, where is the quantity at time , is the initial quantity, that is, the quantity at time . Measuring rates of decay Mean lifetime If the decaying quantity, ''N''(''t''), is the number of discrete elements in a certain set (mathematics), set, it is possible to compute the average length of time that an element remains in the set. This is called the mean lifetime (or simply the lifetime), where the exponential time constant, \tau, relates to the decay rate constant, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |