HOME
*





Unital (geometry)
In geometry, a unital is a set of ''n''3 + 1 points arranged into subsets of size ''n'' + 1 so that every pair of distinct points of the set are contained in exactly one subset. This is equivalent to saying that a unital is a 2-(''n''3 + 1, ''n'' + 1, 1) block design. Some unitals may be embedded in a projective plane of order ''n''2 (the subsets of the design become sets of collinear points in the projective plane). In this case of ''embedded unitals'', every line of the plane intersects the unital in either 1 or ''n'' + 1 points. In the Desarguesian planes, PG(2,''q''2), the classical examples of unitals are given by nondegenerate Hermitian curves. There are also many non-classical examples. The first and the only known unital with non prime power parameters, ''n''=''6'', was constructed by Bhaskar Bagchi and Sunanda Bagchi. It is still unknown if this unital can be embedded in a projective plane of order ''36'', if such a plane exists. Unitals Classical We review some termi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stabilizer (group Theory)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory Of Polarities
A theory is a rational type of abstraction, abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific theory, scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how Nature (philosophy), nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings. In modern science, the term "theory" refers to Scientific theory, scientific theories, a well-confirmed type of explanation of nature, made in a way Consistency, consistent with the scientific method, and fulfilling the Scientific theory#Characteristics of theories, criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide Empi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadric
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in ''D'' + 1 variables; for example, in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a ''degenerate quadric'' or a ''reducible quadric''. In coordinates , the general quadric is thus defined by the algebraic equationSilvio LevQuadricsin "Geometry Formulas and Facts", excerpted from 30th Edition of ''CRC Standard Mathematical Tables and Formulas'', CRC Press, from The Geometry Center at University of Minnesota : \sum_^ x_i Q_ x_j + \sum_^ P_i x_i + R = 0 which may be compactly written in vector and matrix notation as: : x Q x^\mathrm + P x^\mathrm + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Translation Plane
In mathematics, a translation plane is a projective plane which admits a certain group of symmetries (described below). Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation. In a projective plane, let represent a point, and represent a line. A '' central collineation'' with ''center'' and ''axis'' is a collineation fixing every point on and every line through . It is called an ''elation'' if is on , otherwise it is called a ''homology''. The central collineations with center and axis form a group. A line in a projective plane is a ''translation line'' if the group of all elations with axis acts transitively on the points of the affine plane obtained by removing from the plane , (the affine deri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Translation Plane
In mathematics, a translation plane is a projective plane which admits a certain group of symmetries (described below). Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation. In a projective plane, let represent a point, and represent a line. A '' central collineation'' with ''center'' and ''axis'' is a collineation fixing every point on and every line through . It is called an ''elation'' if is on , otherwise it is called a ''homology''. The central collineations with center and axis form a group. A line in a projective plane is a ''translation line'' if the group of all elations with axis acts transitively on the points of the affine plane obtained by removing from the plane , (the affine deri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collineation
In projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. A collineation is thus an ''isomorphism'' between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group. Definition Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated differently. Linear algebra For a projective space defined in terms of linear algebra (as the projectiviza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hall Plane Of Order 9
In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided ''p''2''n'' > 4. Algebraic construction via Hall systems The original construction of Hall planes was based on the Hall quasifield (also called a ''Hall system''), H of order p^ for ''p'' a prime. The creation of the plane from the quasifield follows the standard construction (see quasifield for details). To build a Hall quasifield, start with a Galois field, F = \operatorname(p^n) for ''p'' a prime and a quadratic irreducible polynomial f(x) = x^2 - rx - s over ''F''. Extend H=F\times F, a two-dimensional vector space over ''F'', to a quasifield by defining a multiplication on the vectors by (a,b)\circ (c,d) = (ac -bd^f(c), ad - bc + br) when d \neq 0 and (a,b) \circ (c,0) = (ac, bc) otherwise. Writing the elements of ''H'' in terms of a basis , that is, identifying ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hughes Plane
In mathematics, a Hughes plane is one of the non-Desarguesian projective planes found by . There are examples of order ''p''2''n'' for every odd prime ''p'' and every positive integer ''n''. Construction The construction of a Hughes plane is based on a nearfield N of order ''p''''2n'' for ''p'' an odd prime whose kernel K has order ''p''''n'' and coincides with the center of N. Properties A Hughes plane H: # is a non-Desarguesian projective plane of odd square prime power order of Lenz-Barlotti type I.1, # has a Desarguesian Baer subplane H0, # is a self-dual plane in which every orthogonal polarity of H0 can be extended to a polarity of H, # every central collineation of H0 extends to a central collineation of H, and # the full collineation group of H has two point orbits (one of which is H0), two line orbits, and four flag orbits. The smallest Hughes Plane (order 9) The Hughes plane of order 9 was actually found earlier by Veblen and Wedderburn in 1907. A construction of this p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hall Plane
In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided ''p''2''n'' > 4. Algebraic construction via Hall systems The original construction of Hall planes was based on the Hall quasifield (also called a ''Hall system''), H of order p^ for ''p'' a prime. The creation of the plane from the quasifield follows the standard construction (see quasifield for details). To build a Hall quasifield, start with a Galois field, F = \operatorname(p^n) for ''p'' a prime and a quadratic irreducible polynomial f(x) = x^2 - rx - s over ''F''. Extend H=F\times F, a two-dimensional vector space over ''F'', to a quasifield by defining a multiplication on the vectors by (a,b)\circ (c,d) = (ac -bd^f(c), ad - bc + br) when d \neq 0 and (a,b) \circ (c,0) = (ac, bc) otherwise. Writing the elements of ''H'' in terms of a basis , that is, identifying ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-Desarguesian Plane
In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem (named after Girard Desargues), or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective spaces of dimension not 2; in other words, the only projective spaces of dimension not equal to 2 are the classical projective geometries over a field (or division ring). However, David Hilbert found that some projective planes do not satisfy it. The current state of knowledge of these examples is not complete. Examples There are many examples of both finite and infinite non-Desarguesian planes. Some of the known examples of infinite non-Desarguesian planes include: *The Moulton plane. *Moufang planes over alternative division rings that are not associative, such as the projective plane over the octonions. Since all finite alternative division rings are fields (Artin–Zorn theorem), the only non-Desarguesian Moufang planes are infinite. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]