Uniqueness Quantification
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols " ∃!" or "∃=1". It is defined to mean there exists an object with the given property, and all objects with this property are equal. For example, the formal statement : \exists! n \in \mathbb\,(n - 2 = 4) may be read as "there is exactly one natural number n such that n - 2 =4". Proving uniqueness The most common technique to prove the unique existence of an object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, ''a'' and ''b'') must be equal to each other (i.e. a = b). For example, to show that the equation x + 2 = 5 has exactly one solution, one would first start by establishing that at least one solution exists ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equality (mathematics)
In mathematics, equality is a relationship between two quantities or Expression (mathematics), expressions, stating that they have the same value, or represent the same mathematical object. Equality between and is written , and read " equals ". In this equality, and are distinguished by calling them ''sides of an equation, left-hand side'' (''LHS''), and ''right-hand side'' (''RHS''). Two objects that are not equal are said to be distinct. Equality is often considered a primitive notion, meaning it is not formally defined, but rather informally said to be "a relation each thing bears to itself and nothing else". This characterization is notably circular ("nothing else"), reflecting a general conceptual difficulty in fully characterizing the concept. Basic properties about equality like Reflexive relation, reflexivity, Symmetric relation, symmetry, and Transitive relation, transitivity have been understood intuitively since at least the ancient Greeks, but were not symboli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
1 (number)
1 (one, unit, unity) is a number, numeral, and glyph. It is the first and smallest positive integer of the infinite sequence of natural numbers. This fundamental property has led to its unique uses in other fields, ranging from science to sports, where it commonly denotes the first, leading, or top thing in a group. 1 is the unit of counting or measurement, a determiner for singular nouns, and a gender-neutral pronoun. Historically, the representation of 1 evolved from ancient Sumerian and Babylonian symbols to the modern Arabic numeral. In mathematics, 1 is the multiplicative identity, meaning that any number multiplied by 1 equals the same number. 1 is by convention not considered a prime number. In digital technology, 1 represents the "on" state in binary code, the foundation of computing. Philosophically, 1 symbolizes the ultimate reality or source of existence in various traditions. In mathematics The number 1 is the first natural number after 0. Each natural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniqueness Theorem
In mathematics, a uniqueness theorem, also called a unicity theorem, is a theorem asserting the uniqueness of an object satisfying certain conditions, or the equivalence of all objects satisfying the said conditions. Examples of uniqueness theorems include: * Cauchy's theorem (geometry), Cauchy's rigidity theorem and Alexandrov's uniqueness theorem for three-dimensional polyhedra. * Black hole uniqueness theorem * Cauchy–Kowalevski theorem is the main local existence theorem, existence and uniqueness theorem for analytic function, analytic partial differential equations associated with Cauchy problem, Cauchy initial value problems. * Cauchy–Kowalevski theorem#Cauchy–Kowalevski–Kashiwara theorem, Cauchy–Kowalevski–Kashiwara theorem is a wide generalization of the Cauchy–Kowalevski theorem for systems of linear partial differential equations with analytic coefficients. *Euclidean division#Statement of the theorem, Division theorem, the uniqueness of quotient and remainder ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singleton (mathematics)
In mathematics, a singleton (also known as a unit set or one-point set) is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and \ are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-hot
In digital circuits and machine learning, a one-hot is a group of bits among which the legal combinations of values are only those with a single high (1) bit and all the others low (0). A similar implementation in which all bits are '1' except one '0' is sometimes called one-cold. In statistics, dummy variables represent a similar technique for representing categorical data. Applications Digital circuitry One-hot encoding is often used for indicating the state of a state machine. When using binary, a decoder is needed to determine the state. A one-hot state machine, however, does not need a decoder as the state machine is in the ''n''th state if, and only if, the ''n''th bit is high. A ring counter with 15 sequentially ordered states is an example of a state machine. A 'one-hot' implementation would have 15 flip-flops chained in series with the Q output of each flip-flop connected to the D input of the next and the D input of the first flip-flop connected to the Q output of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Essentially Unique
In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of essential uniqueness presupposes some form of "sameness", which is often formalized using an equivalence relation. A related notion is a universal property, where an object is not only essentially unique, but unique ''up to a unique isomorphism'' (meaning that it has trivial automorphism group). In general there can be more than one isomorphism between examples of an essentially unique object. Examples Set theory At the most basic level, there is an essentially unique set of any given cardinality, whether one labels the elements \ or \. In this case, the non-uniqueness of the isomorphism (e.g., match 1 to a or 1 to ''c'') is reflected in the symmetric group. On the other hand, there is an essentially unique totally ordered set of any given ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Replacement Axiom
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas. Statement Suppose P is a definable binary relation (which may be a proper class) such that for every set x there is a unique set y such that P(x,y) holds. There is a corresponding definable function F_P, where F_P(x)=y if and only if P(x,y). Conside ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Essentially Unique
In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of essential uniqueness presupposes some form of "sameness", which is often formalized using an equivalence relation. A related notion is a universal property, where an object is not only essentially unique, but unique ''up to a unique isomorphism'' (meaning that it has trivial automorphism group). In general there can be more than one isomorphism between examples of an essentially unique object. Examples Set theory At the most basic level, there is an essentially unique set of any given cardinality, whether one labels the elements \ or \. In this case, the non-uniqueness of the isomorphism (e.g., match 1 to a or 1 to ''c'') is reflected in the symmetric group. On the other hand, there is an essentially unique totally ordered set of any given ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Up To
Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, " is unique up to " means that all objects under consideration are in the same equivalence class with respect to the relation . Moreover, the equivalence relation is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation that relates two lists if one can be obtained by reordering (permutation, permuting) the other. As another example, the statement "the solution to an indefinite integral is , up ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |