Uniform Ensemble
   HOME
*





Uniform Ensemble
In cryptography, a distribution ensemble or probability ensemble is a family of distributions or random variables X = \_ where I is a (countable) index set, and each X_i is a random variable, or probability distribution. Often I=\N and it is required that each X_n have a certain property for ''n'' sufficiently large. For example, a uniform ensemble U = \_ is a distribution ensemble where each U_n is uniformly distributed over strings of length ''n''. In fact, many applications of probability ensembles implicitly assume that the probability spaces for the random variables all coincide in this way, so every probability ensemble is also a stochastic process. See also * Provable security * Statistically close * Pseudorandom ensemble * Computational indistinguishability In computational complexity and cryptography, two families of distributions are computationally indistinguishable if no efficient algorithm can tell the difference between them except with negligible probability. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Distribution (discrete)
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein a finite number of values are equally likely to be observed; every one of ''n'' values has equal probability 1/''n''. Another way of saying "discrete uniform distribution" would be "a known, finite number of outcomes equally likely to happen". A simple example of the discrete uniform distribution is throwing a fair dice. The possible values are 1, 2, 3, 4, 5, 6, and each time the die is thrown the probability of a given score is 1/6. If two dice are thrown and their values added, the resulting distribution is no longer uniform because not all sums have equal probability. Although it is convenient to describe discrete uniform distributions over integers, such as this, one can also consider discrete uniform distributions over any finite set. For instance, a random permutation is a permutation generated uniformly from the permutations of a given length, and a unif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Provable Security
Provable security refers to any type or level of computer security that can be proved. It is used in different ways by different fields. Usually, this refers to mathematical proofs, which are common in cryptography. In such a proof, the capabilities of the attacker are defined by an adversarial model (also referred to as attacker model): the aim of the proof is to show that the attacker must solve the underlying hard problem in order to break the security of the modelled system. Such a proof generally does not consider side-channel attacks or other implementation-specific attacks, because they are usually impossible to model without implementing the system (and thus, the proof only applies to this implementation). Outside of cryptography, the term is often used in conjunction with secure coding and security by design, both of which can rely on proofs to show the security of a particular approach. As with the cryptographic setting, this involves an attacker model and a model of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistically Close
The variation distance of two distributions X and Y over a finite domain D, (often referred to as ''statistical difference'' or ''statistical distance'' Reyzin, Leo. (Lecture NotesExtractors and the Leftover Hash Lemma in cryptography) is defined as \Delta(X,Y)=\frac \sum _ , \Pr =\alpha- \Pr =\alpha, . We say that two probability ensembles \_ and \_ are statistically close if \Delta(X_k,Y_k) is a negligible function in k. References See also * Zero-knowledge proof * Randomness extractor A randomness extractor, often simply called an "extractor", is a function, which being applied to output from a weakly random information entropy, entropy source, together with a short, uniformly random seed, generates a highly random output that ap ... Cryptography {{crypto-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudorandom Ensemble
In cryptography, a pseudorandom ensemble is a family of variables meeting the following criteria: Let U = \_ be a uniform ensemble and X = \_ be an ensemble Ensemble may refer to: Art * Architectural ensemble * ''Ensemble'' (album), Kendji Girac 2015 album * Ensemble (band), a project of Olivier Alary * Ensemble cast (drama, comedy) * Ensemble (musical theatre), also known as the chorus * ''En .... The ensemble X is called pseudorandom if X and U are indistinguishable in polynomial time. References * Goldreich, Oded (2001). ''Foundations of Cryptography: Volume 1, Basic Tools''. Cambridge University Press. . Fragments available at theauthor's web site Algorithmic information theory Pseudorandomness Cryptography {{crypto-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Indistinguishability
In computational complexity and cryptography, two families of distributions are computationally indistinguishable if no efficient algorithm can tell the difference between them except with negligible probability. Formal definition Let \scriptstyle\_ and \scriptstyle\_ be two distribution ensembles indexed by a security parameter ''n'' (which usually refers to the length of the input); we say they are computationally indistinguishable if for any non-uniform probabilistic polynomial time algorithm ''A'', the following quantity is a negligible function in ''n'': : \delta(n) = \left, \Pr_ A(x) = 1- \Pr_ A(x) = 1\. denoted D_n \approx E_n. In other words, every efficient algorithm ''As behavior does not significantly change when given samples according to ''D''''n'' or ''E''''n'' in the limit as n\to \infty. Another interpretation of computational indistinguishability, is that polynomial-time algorithms actively trying to distinguish between the two ensembles cannot do so: that any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]