HOME
*



picture info

Unification (logic)
In logic and computer science, unification is an algorithmic process of solving equations between symbolic expressions. Depending on which expressions (also called ''terms'') are allowed to occur in an equation set (also called ''unification problem''), and which expressions are considered equal, several frameworks of unification are distinguished. If higher-order variables, that is, variables representing functions, are allowed in an expression, the process is called higher-order unification, otherwise first-order unification. If a solution is required to make both sides of each equation literally equal, the process is called syntactic or free unification, otherwise semantic or equational unification, or E-unification, or unification modulo theory. A ''solution'' of a unification problem is denoted as a substitution, that is, a mapping assigning a symbolic value to each variable of the problem's expressions. A unification algorithm should compute for a given problem a ''complete' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Alan Robinson
John Alan Robinson (9 March 1930 – 5 August 2016) was a philosopher, mathematician, and computer scientist. He was a professor emeritus at Syracuse University. Alan Robinson's major contribution is to the foundations of automated theorem proving. His unification algorithm eliminated one source of combinatorial explosion in resolution provers; it also prepared the ground for the logic programming paradigm, in particular for the Prolog language. Robinson received the 1996 Herbrand Award for Distinguished Contributions to Automated reasoning. Life Robinson was born in Halifax, Yorkshire, England in 1930 and left for the United States in 1952 with a classics degree from Cambridge University. He studied philosophy at the University of Oregon before moving to Princeton University where he received his PhD in philosophy in 1956. He then worked at Du Pont as an operations research analyst, where he learned programming and taught himself mathematics. He moved to Rice University ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lambda-term Bound Variables
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twelf
Twelf is an implementation of the logical framework LF developed by Frank Pfenning and Carsten Schürmann at Carnegie Mellon University. It is used for logic programming and for the formalization of programming language theory. Introduction At its simplest, a Twelf program (called a "signature") is a collection of declarations of type families (relations) and constants that inhabit those type families. For example, the following is the standard definition of the natural numbers, with standing for zero and the successor operator. nat : type. z : nat. s : nat -> nat. Here is a type, and and are constant terms. As a dependently typed system, types can be indexed by terms, which allows the definition of more interesting type families. Here is a definition of addition: plus : nat -> nat -> nat -> type. plus_zero : plus M z M. plus_succ : plus M (s N) (s P) <- plus M N P. The type family is read as a relation between three na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isabelle (theorem Prover)
The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods. It can be seen as an IDE for formal methods. In recent years, a substantial number of theories and system extensions have been collected in the Isabelle ''Archive of Formal Proofs'' (Isabelle AFP) Isabelle was named by Lawrence Paulson after Gérard Huet's daughter. The Isabelle theorem prover is free software, released under the revised BSD license. Features Isabelle is generic: it provides a meta-logic (a weak type theory), which is used to e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Protocol
A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport. A cryptographic protocol usually incorporates at least some of these aspects: * Key agreement or establishment * Entity authentication * Symmetric encryption and message authentication material construction * Secured application-level data transport * Non-repudiation methods * Secret sharing methods * Secure multi-party computation For example, Transport Layer Security (TLS) is a cryptographic protocol that is used to secure web (HTTPS) connections. It has an entit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term Rewriting
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting. Example cases Logic In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SMT Solver
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers). SMT solvers are tools which aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing. Since Boolean satisfiability is already NP-complete, the SMT problem is typically NP-hard, and for many theories it is undecidable. Resea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Inference
Type inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Nontechnical explanation Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line. Calling something a table indicates another designation than calling it firewood, though it might be materially the same thing. While their material properties make things usable for some purposes, they are also subject of particular designations. This is especially the case in abstract fields, namely mathematics and computer science, where the material is finally only bits or formulas. To exclude unwanted, but materially possible uses, the concept of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type System
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components (e.g. "string", "array of float", "function returning boolean"). Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type syntax and grammar. The main purpose of a type system in a programming language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]