HOME
*





Unfoldable Cardinal
In mathematics, an unfoldable cardinal is a certain kind of large cardinal number. Formally, a cardinal number κ is λ-unfoldable if and only if for every transitive model ''M'' of cardinality κ of ZFC-minus-power set such that κ is in ''M'' and ''M'' contains all its sequences of length less than κ, there is a non-trivial elementary embedding ''j'' of ''M'' into a transitive model with the critical point of ''j'' being κ and ''j''(κ) ≥ λ. A cardinal is unfoldable if and only if it is an λ-unfoldable for all ordinals λ. A cardinal number κ is strongly λ-unfoldable if and only if for every transitive model ''M'' of cardinality κ of ZFC-minus-power set such that κ is in ''M'' and ''M'' contains all its sequences of length less than κ, there is a non-trivial elementary embedding ''j'' of ''M'' into a transitive model "N" with the critical point of ''j'' being κ, ''j''(κ) ≥ λ, and V(λ) is a subset of ''N''. Without loss of generality, we can demand also that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Journal Of Symbolic Logic
''The'' () is a grammatical article in English, denoting persons or things already mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with pronouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of pronoun ''thee'') when followed by a v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Totally Indescribable Cardinal
In mathematics, a Q-indescribable cardinal is a certain kind of large cardinal number that is hard to axiomatize in some language ''Q''. There are many different types of indescribable cardinals corresponding to different choices of languages ''Q''. They were introduced by . A cardinal number κ is called Π-indescribable if for every Πm proposition φ, and set A ⊆ Vκ with (Vκ+n, ∈, A) ⊧ φ there exists an α < κ with (Vα+n, ∈, A ∩ Vα) ⊧ φ. Following Lévy, here one looks at formulas with m-1 alternations of quantifiers with the outermost quantifier being universal. Σ-indescribable cardinals are defined in a similar way. The idea is that κ cannot be distinguished (looking from below) from smaller cardinals by any formula of n+1-th order logic with m-1 alternations of quantifiers even with the advantage of an extra unary predicate symbol (for A). This implies that it is large because it means that there must be many smaller cardinals with similar prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weakly Compact Cardinal
In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by ; weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory. (Tarski originally called them "not strongly incompact" cardinals.) Formally, a cardinal κ is defined to be weakly compact if it is uncountable and for every function ''f'': º 2 → there is a set of cardinality κ that is homogeneous for ''f''. In this context, º 2 means the set of 2-element subsets of κ, and a subset ''S'' of κ is homogeneous for ''f'' if and only if either all of 'S''sup>2 maps to 0 or all of it maps to 1. The name "weakly compact" refers to the fact that if a cardinal is weakly compact then a certain related infinitary language satisfies a version of the compactness theorem; see below. Every weakly compact cardinal is a reflecting cardinal, and is also a limit of reflecting cardinals. This means also that weakly compact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Consistency Strength
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory ''T''. Instead we usually take a theory ''S'', believed to be consistent, and try to prove the weaker statement that if ''S'' is consistent then ''T'' must also be consistent—if we can do this we say that ''T'' is ''consistent relative to S''. If ''S'' is also consistent relative to ''T'' then we say that ''S'' and ''T'' are equiconsistent. Consistency In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency. Hilbert proposed a program at the beginning of the 20th century whose ultimate goal was to show, using mathematical methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Cardinal
In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case. Let 'κ''sup><ω denote the set of all finite subsets of ''κ''. A cardinal number ''κ'' is called Ramsey if, for every function :''f'': 'κ''sup><ω → there is a set ''A'' of cardinality ''κ'' that is homogeneous for ''f''. That is, for every ''n'', the function ''f'' is constant on the subsets of cardinality ''n'' from ''A''. A cardinal ''κ'' is called ineffably Ramsey if ''A'' can be chosen to be a stationary subset of ''κ''. A cardinal ''κ'' is called virtually Ramsey if for every function :''f'': 'κ''sup><ω → there is ''C'', a closed and unbounded subset of ''κ'', so that for every ''λ'' in ''C'' of uncountable

Proper Forcing Axiom
In the mathematical field of set theory, the proper forcing axiom (''PFA'') is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings. Statement A forcing or partially ordered set P is proper if for all regular uncountable cardinals \lambda , forcing with P preserves stationary subsets of lambda\omega . The proper forcing axiom asserts that if P is proper and Dα is a dense subset of P for each α<ω1, then there is a filter G \subseteq P such that Dα âˆ© G is nonempty for all α<ω1. The class of proper forcings, to which PFA can be applied, is rather large. For example, standard arguments show that if P is or
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible universe, constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the Continuum hypothesis#The generalized continuum hypothesis, generalized continuum hypothesis, the negation of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strong Cardinal
In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal. Formal definition If λ is any ordinal, κ is λ-strong means that κ is a cardinal number and there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point κ and :V_\lambda\subseteq M That is, ''M'' agrees with ''V'' on an initial segment. Then κ is strong means that it is λ-strong for all ordinals λ. Relationship with other large cardinals By definitions, strong cardinals lie below supercompact cardinals and above measurable cardinals in the consistency strength hierarchy. κ is κ-strong if and only if it is measurable. If κ is strong or λ-strong for λ ≥ κ+2, then the ultrafilter ''U'' witnessing that κ is measurable will be in ''V''κ+2 and thus in ''M''. So for any α < κ, we have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]