Two-graph
   HOME
*





Two-graph
In mathematics, a two-graph is a set of (unordered) triples chosen from a finite vertex set ''X'', such that every (unordered) quadruple from ''X'' contains an even number of triples of the two-graph. A regular two-graph has the property that every pair of vertices lies in the same number of triples of the two-graph. Two-graphs have been studied because of their connection with equiangular lines and, for regular two-graphs, strongly regular graphs, and also finite groups because many regular two-graphs have interesting automorphism groups. A two-graph is not a graph and should not be confused with other objects called 2-graphs in graph theory, such as 2-regular graphs. Examples On the set of vertices the following collection of unordered triples is a two-graph: :123  124  135  146  156  236  245  256  345  346 This two-graph is a regular two-graph since each pair of distinct vertices appear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Regular Graph
In graph theory, a strongly regular graph (SRG) is defined as follows. Let be a regular graph with vertices and degree . is said to be strongly regular if there are also integers and such that: * Every two adjacent vertices have common neighbours. * Every two non-adjacent vertices have common neighbours. The complement of an is also strongly regular. It is a . A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non-zero. It is a locally linear graph whenever . Etymology A strongly regular graph is denoted an srg(''v'', ''k'', λ, μ) in the literature. By convention, graphs which satisfy the definition trivially are excluded from detailed studies and lists of strongly regular graphs. These include the disjoint union of one or more equal-sized complete graphs, and their complements, the complete multipartite graphs with equal-sized independent sets. Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues And Eigenvectors
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Families Of Sets
Family (from la, familia) is a group of people related either by consanguinity (by recognized birth) or affinity (by marriage or other relationship). The purpose of the family is to maintain the well-being of its members and of society. Ideally, families offer predictability, structure, and safety as members mature and learn to participate in the community. Historically, most human societies use family as the primary locus of attachment, nurturance, and socialization. Anthropologists classify most family organizations as matrifocal (a mother and her children), patrifocal (a father and his children), conjugal (a wife, her husband, and children, also called the nuclear family), avuncular (a man, his sister, and her children), or extended (in addition to parents and children, may include grandparents, aunts, uncles, or cousins). The field of genealogy aims to trace family lineages through history. The family is also an important economic unit studied in family economics. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gordon Royle
Gordon F. Royle is a professor at the School of Mathematics and Statistics at The University of Western Australia. Royle is the co-author (with Chris Godsil) of the book ''Algebraic Graph Theory'' (Springer Verlag, 2001, ). Royle is also known for his research into the mathematics of Sudoku and his search for the Sudoku puzzle with the smallest number of entries that has a unique solution. Royle earned his Ph.D. in 1987 from the University of Western Australia under the supervision of Cheryl Praeger Cheryl Elisabeth Praeger (born 7 September 1948, Toowoomba, Queensland) is an Australian mathematician. Praeger received BSc (1969) and MSc degrees from the University of Queensland (1974), and a doctorate from the University of Oxford in 197 ... and Brendan McKay. References {{DEFAULTSORT:Royle, Gordon Living people Australian mathematicians Graph theorists University of Western Australia alumni University of Western Australia faculty Year of birth missing (livi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chris Godsil
Christopher David Godsil is a professor and the former Chair at the Department of Combinatorics and mathematical optimization, Optimization in the University of Waterloo Faculty of Mathematics, faculty of mathematics at the University of Waterloo. He wrote the popular textbook on algebraic graph theory, entitled ''Algebraic Graph Theory'', with Gordon Royle, His earlier textbook on algebraic combinatorics discussed distance-regular graphs and association schemes. Background He started the Journal of Algebraic Combinatorics, and was the Editor-in-Chief of the Electronic Journal of Combinatorics from 2004 to 2008. He is also on the editorial board of the Journal of Combinatorial Theory Series B and Combinatorica. He obtained his Ph.D. in 1979 at the University of Melbourne under the supervision of Derek Alan Holton. He wrote a paper with Paul Erdős, so making his Erdős number equal to 1.Paul Erdős, Chris D. Godsil, S. G. Krantz, and Torren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "\,\leq\," in the homogeneity axiom. It can also re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gram Matrix
In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors v_1,\dots, v_n in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product G_ = \left\langle v_i, v_j \right\rangle., p.441, Theorem 7.2.10 If the vectors v_1,\dots, v_n are the columns of matrix X then the Gram matrix is X^* X in the general case that the vector coordinates are complex numbers, which simplifies to X^\top X for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero. It is named after Jørgen Pedersen Gram. Examples For finite-dimensional real vectors in \mathbb^n with the usual Euclidean dot product, the Gram matrix is G = V^\top V, where V is a matrix whose columns are the vectors v_k and V^\top is its transpose whose rows are the vectors v_k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seidel Adjacency Matrix
In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph ''G'' is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices. It is also called the Seidel matrix or—its original name—the (−1,1,0)-adjacency matrix. It can be interpreted as the result of subtracting the adjacency matrix of ''G'' from the adjacency matrix of the complement of ''G''. The multiset of eigenvalues of this matrix is called the Seidel spectrum. The Seidel matrix was introduced by J. H. van Lint and in 1966 and extensively exploited by Seidel and coauthors. The Seidel matrix of ''G'' is also the adjacency matrix of a signed complete graph ''KG'' in which the edges of ''G'' are negative and the edges not in ''G'' are positive. It is also the adjacency matrix of the two-graph associated with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equiangular Lines
In geometry, a set of lines is called equiangular if all the lines intersect at a single point, and every pair of lines makes the same angle. Equiangular lines in Euclidean space Computing the maximum number of equiangular lines in ''n''-dimensional Euclidean space is a difficult problem, and unsolved in general, though bounds are known. The maximal number of equiangular lines in 2-dimensional Euclidean space is 3: we can take the lines through opposite vertices of a regular hexagon, each at an angle 120 degrees from the other two. The maximum in 3 dimensions is 6: we can take lines through opposite vertices of an icosahedron. It is known that the maximum number in any dimension n is less than or equal to \binom. This upper bound is tight up to a constant factor to a construction by de Caen. The maximum in dimensions 1 through 16 is listed in the ''On-Line Encyclopedia of Integer Sequences'' as follows: :1, 3, 6, 6, 10, 16, 28, 28, 28, 28, 28, 28, 28, 28, 36, 40, ... In particu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]