Turing Machine
   HOME
*



picture info

Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write and which direction to move is based on a finite table that specifies what to do for each co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turing Machine Model Davey 2012
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. He is widely considered to be the father of theoretical computer science and artificial intelligence. Born in Maida Vale, London, Turing was raised in southern England. He graduated at King's College, Cambridge, with a degree in mathematics. Whilst he was a fellow at Cambridge, he published a proof demonstrating that some purely mathematical yes–no questions can never be answered by computation and defined a Turing machine, and went on to prove that the halting problem for Turing machines is undecidable. In 1938, he obtained his PhD from the Department of Mathemat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Enumeration
An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... for the set of positive integers), but in other cases it may be necessary to impose a (perhaps arbitrary) ordering. In some contexts, such as enumerative combinatorics, the term ''enumeration'' is used more in the sense of ''counting'' – with emphasis on determination of the number of elements that a set contains, rather than the production of an explicit listing of those elements. Combinatorics In combinatorics, enumeration means counting, i.e., determining the exact number of elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Effective Method
In logic, mathematics and computer science, especially metalogic and computability theory, an effective method Hunter, Geoffrey, ''Metalogic: An Introduction to the Metatheory of Standard First-Order Logic'', University of California Press, 1971 or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. An effective method is sometimes also called a mechanical method or procedure. Definition The definition of an effective method involves more than the method itself. In order for a method to be called effective, it must be considered with respect to a class of problems. Because of this, one method may be effective with respect to one class of problems and ''not'' be effective with respect to a different class. A method is formally called effective for a class of problems when it satisfies these criteria: * It consists of a finite number of exact, finite instructions. * When it is applied to a problem from its class: ** I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computation
Computation is any type of arithmetic or non-arithmetic calculation that follows a well-defined model (e.g., an algorithm). Mechanical or electronic devices (or, historically, people) that perform computations are known as '' computers''. An especially well-known discipline of the study of computation is computer science. Physical process of Computation Computation can be seen as a purely physical process occurring inside a closed physical system called a computer. Examples of such physical systems are digital computers, mechanical computers, quantum computers, DNA computers, molecular computers, microfluidics-based computers, analog computers, and wetware computers. This point of view has been adopted by the physics of computation, a branch of theoretical physics, as well as the field of natural computing. An even more radical point of view, pancomputationalism (inaudible word), is the postulate of digital physics that argues that the evolution of the universe is itself ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Turing Machine
In computer science, a universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary Turing machine on arbitrary input. The universal machine essentially achieves this by reading both the description of the machine to be simulated as well as the input to that machine from its own tape. Alan Turing introduced the idea of such a machine in 1936–1937. This principle is considered to be the origin of the idea of a stored-program computer used by John von Neumann in 1946 for the "Electronic Computing Instrument" that now bears von Neumann's name: the von Neumann architecture.Martin Davis, ''The universal computer : the road from Leibniz to Turing'' (2017) In terms of computational complexity, a multi-tape universal Turing machine need only be slower by logarithmic factor compared to the machines it simulates. Introduction Every Turing machine computes a certain fixed partial computable function from the input strings over its alphabet. In that sense it b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unrestricted Grammar
In automata theory, the class of unrestricted grammars (also called semi-Thue, type-0 or phrase structure grammars) is the most general class of grammars in the Chomsky hierarchy. No restrictions are made on the productions of an unrestricted grammar, other than each of their left-hand sides being non-empty. This grammar class can generate arbitrary recursively enumerable languages. Formal definition An unrestricted grammar is a formal grammar G = (N, T, P, S), where * N is a finite set of nonterminal symbols, * T is a finite set of terminal symbols with N and T disjoint,Actually, T\cap N=\emptyset is not strictly necessary since unrestricted grammars make no real distinction between the two. The designation exists purely so that one knows when to stop generating sentential forms of the grammar; more precisely, the language L(G) recognized by G is restricted to strings of terminal symbols. * P is a finite set of production rules of the form \alpha \to \beta , where \alp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]