Trigonal Curve
   HOME
*





Trigonal Curve
In mathematics, the gonality of an algebraic curve ''C'' is defined as the lowest degree of a nonconstant rational map from ''C'' to the projective line. In more algebraic terms, if ''C'' is defined over the field ''K'' and ''K''(''C'') denotes the function field of ''C'', then the gonality is the minimum value taken by the degrees of field extensions :''K''(''C'')/''K''(''f'') of the function field over its subfields generated by single functions ''f''. If ''K'' is algebraically closed, then the gonality is 1 precisely for curves of genus 0. The gonality is 2 for curves of genus 1 (elliptic curves) and for hyperelliptic curves (this includes all curves of genus 2). For genus ''g'' ≥ 3 it is no longer the case that the genus determines the gonality. The gonality of the generic curve of genus ''g'' is the floor function of :(''g'' + 3)/2. Trigonal curves are those with gonality 3, and this case gave rise to the name in general. Trigonal curves include the Picard curves, of gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Biography Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Federico Amodeo
Federico Amodeo (8 October 1859, Avellino – 3 November 1946, Naples) was an Italian mathematician, specializing in projective geometry, and a historian of mathematics. He received in 1883 his Ph.D. (''laurea'') in mathematics from the University of Naples, where he became an instructor (''libero docente'') and from 1885 to 1923 taught projective geometry. He also taught as a professor in Naples at the Istituto Tecnico "Gianbattista Della Porta" from 1890 to 1923, when he retired. In 1890–1891 he visited the geometers at the University of Turin. As a historian, he specialized in the history of mathematics in Naples before 1860, which he explicated in a two-volume work entitled ''Vita matematica napoletana''; volume I (1905), volume II (1924). At the University of Naples from 1905 to 1922 he taught a course on the history of mathematics. Amodeo was an invited speaker at the International Congress of Mathematicians in 1900 at Paris and again in 1908 in Rome. He was elected a mem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homogeneous Coordinate Ring
In algebraic geometry, the homogeneous coordinate ring ''R'' of an algebraic variety ''V'' given as a subvariety of projective space of a given dimension ''N'' is by definition the quotient ring :''R'' = ''K'' 'X''0, ''X''1, ''X''2, ..., ''X''''N''thinsp;/''I'' where ''I'' is the homogeneous ideal defining ''V'', ''K'' is the algebraically closed field over which ''V'' is defined, and :''K'' 'X''0, ''X''1, ''X''2, ..., ''X''''N'' is the polynomial ring in ''N'' + 1 variables ''X''''i''. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space). The choice of basis means this definition is not intrinsic, but it can be made so by using the symmetric algebra. Formulation Since ''V'' is assumed to be a variety, and so an irreducible algebraic set, the ideal ''I'' can be chosen to be a prime ideal, and so ''R'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded Betti Number
In algebraic geometry, the homogeneous coordinate ring ''R'' of an algebraic variety ''V'' given as a subvariety of projective space of a given dimension ''N'' is by definition the quotient ring :''R'' = ''K'' 'X''0, ''X''1, ''X''2, ..., ''X''''N''thinsp;/''I'' where ''I'' is the homogeneous ideal defining ''V'', ''K'' is the algebraically closed field over which ''V'' is defined, and :''K'' 'X''0, ''X''1, ''X''2, ..., ''X''''N'' is the polynomial ring in ''N'' + 1 variables ''X''''i''. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space). The choice of basis means this definition is not intrinsic, but it can be made so by using the symmetric algebra. Formulation Since ''V'' is assumed to be a variety, and so an irreducible algebraic set, the ideal ''I'' can be chosen to be a prime ideal, and so ''R'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clifford Index
In mathematics, Clifford's theorem on special divisors is a result of on algebraic curves, showing the constraints on special linear systems on a curve ''C''. Statement A divisor on a Riemann surface ''C'' is a formal sum \textstyle D = \sum_P m_P P of points ''P'' on ''C'' with integer coefficients. One considers a divisor as a set of constraints on meromorphic functions in the function field of ''C,'' defining L(D) as the vector space of functions having poles only at points of ''D'' with positive coefficient, ''at most as bad'' as the coefficient indicates, and having zeros at points of ''D'' with negative coefficient, with ''at least'' that multiplicity. The dimension of L(D) is finite, and denoted \ell(D). The linear system of divisors attached to ''D'' is the corresponding projective space of dimension \ell(D)-1. The other significant invariant of ''D'' is its degree ''d'', which is the sum of all its coefficients. A divisor is called ''special'' if ''ℓ''(''K'' & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invertible Sheaf
In mathematics, an invertible sheaf is a coherent sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Definition An invertible sheaf is a locally free sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules, that is, we have :S \otimes T\ isomorphic to ''O''''X'', which acts as identity element for the tensor product. The most significant cases are those coming from algebraic geometry and complex geometry. For spaces such as (locally) Noetherian schemes or complex manifolds, one can actually replace 'locally free' by 'coherent' in the definition. The invertible sheaves in those theories are in effect the line bundles appropriately formulat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Minimal Resolution (algebra)
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of objects of an abelian category), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object. Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has free resolutions, projective resolut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Curve
Picard may refer to: *Picardy, a region of France *Picard language, a language of France *Jean-Luc Picard, a fictional character in the ''Star Trek'' franchise Places * Picard, California, USA * Picard, Quebec, Canada * Picard (crater), a lunar impact crater in Mare Crisium People *Picard (name), a French surname (includes a list of people with this name) *Picards, a religious sect in the fifteenth century Star Trek *The family of Jean-Luc Picard, see List of Star Trek characters (N–S); **'' Star Trek: Picard'', a television series focusing on the character of Picard Other uses *Picard (satellite), an orbiting solar observatory built by CNES *Picard (grape), an alternative name for several wine grape varieties *''TSS Duke of Cumberland'' or ''Picard'', a steamship that operated between Tilbury and Dunkirk from 1927 to 1936 *Picard Surgelés, French retailer of frozen foods See also * * *Berger Picard, French breed of dog of the herding group of breeds *Les Fatals Picards, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]