HOME
*



picture info

Triatomic Molecule
Triatomic molecules are molecules composed of three atoms, of either the same or different chemical elements. Examples include H2O, CO2 (pictured), HCN and O3 (ozone) Molecular vibrations The vibrational modes of a triatomic molecule can be determined in specific cases. Symmetric linear molecules A symmetric linear molecule ABA can perform: * Antisymmetric longitudinal vibrations with frequency :\omega_a=\sqrt * Symmetric longitudinal vibrations with frequency :\omega_=\sqrt * Symmetric transversal vibrations with frequency :\omega_=\sqrt In the previous formulas, ''M'' is the total mass of the molecule, ''mA'' and ''mB'' are the masses of the elements A and B, ''k''1 and ''k''2 are the spring constants of the molecule along its axis and perpendicular to it. Types Homonuclear Homonuclear triatomic molecules contain three of the same kind of atom. That molecule will be an allotrope of that element. Ozone, O3 is an example of a triatomic molecule with all atoms the sam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triatomic Hydrogen
Triatomic hydrogen or H3 is an unstable triatomic molecule containing only hydrogen. Since this molecule contains only three atoms of hydrogen it is the simplest triatomic molecule and it is relatively simple to numerically solve the quantum mechanics description of the particles. Being unstable the molecule breaks up in under a millionth of a second. Its fleeting lifetime makes it rare, but it is quite commonly formed and destroyed in the universe thanks to the commonness of the trihydrogen cation. The infrared spectrum of H3 due to vibration and rotation is very similar to that of the ion, . In the early universe this ability to emit infrared light allowed the primordial hydrogen and helium gas to cool down so as to form stars. Formation The neutral molecule can be formed in a low pressure gas discharge tube. A neutral beam of H3 can be formed from a beam of ions passing through gaseous potassium, which donates an electron to the ion, forming K+. Other gaseous alkali metals, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Xenon Difluoride
Xenon difluoride is a powerful fluorinating agent with the chemical formula , and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid. It has a nauseating odour and low vapor pressure. Structure Xenon difluoride is a linear molecule with an Xe–F bond length of in the vapor stage, and 200 pm in the solid phase. The packing arrangement in solid shows that the fluorine atoms of neighbouring molecules avoid the equatorial region of each molecule. This agrees with the prediction of VSEPR theory, which predicts that there are 3 pairs of non-bonding electrons around the equatorial region of the xenon atom. At high pressures, novel, non-molecular forms of xenon difluoride can be obtained. Under a pressure of ~50 GPa, transforms into a semiconductor consisting of units linked in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Molecular Geometry
Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in social sciences ** Business cycle, the downward and upward movement of gross domestic product (GDP) around its ostensible, long-term growth trend Arts, entertainment, and media Films * ''Cycle'' (2008 film), a Malayalam film * ''Cycle'' (2017 film), a Marathi film Literature * ''Cycle'' (magazine), an American motorcycling enthusiast magazine * Literary cycle, a group of stories focused on common figures Music Musical terminology * Cycle (music), a set of musical pieces that belong together **Cyclic form, a technique of construction involving multiple sections or movements **Interval cycle, a collection of pitch classes generated from a sequence of the same interval class **Song cycle, individually complete songs designed to be perform ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bent Molecular Geometry
In chemistry, molecules with a non-collinear arrangement of two adjacent bonds have bent molecular geometry, also known as angular or V-shaped. Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-collinear directions due to their electron configuration. Water (H2O) is an example of a bent molecule, as well as its analogues. The bond angle between the two hydrogen atoms is approximately 104.45°. Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO2), sulfur dichloride (SCl2), and methylene (CH2). This geometry is almost always consistent with VSEPR theory, which usually explains non-collinearity of atoms with a presence of lone pairs. There are several variants of bending, where the most common is AX2E2 where two covalent bonds and two lone pairs of the central atom (A) form a complete 8-electron shell. They have central ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Molecular Geometry
In chemistry, the linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ''ligands'') placed at a bond angle of 180°. Linear organic molecules, such as acetylene (), are often described by invoking sp orbital hybridization for their carbon centers. According to the VSEPR model (Valence Shell Electron Pair Repulsion model), linear geometry occurs at central atoms with two bonded atoms and zero or three lone pairs ( or ) in the AXE notation. Neutral molecules with linear geometry include beryllium fluoride () with two single bonds, carbon dioxide () with two double bonds, hydrogen cyanide () with one single and one triple bond. The most important linear molecule with more than three atoms is acetylene (), in which each of its carbon atoms is considered to be a central atom with a single bond to one hydrogen and a triple bond to the other carbon atom. Linear anions include azide () and thiocyanate (), and a linear cation is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trisulfur
The molecule, known as trisulfur, sulfur trimer, thiozone, or triatomic sulfur, is a cherry-red allotrope of sulfur. It comprises about 10% of vaporised sulfur at and . It has been observed at cryogenic temperatures as a solid. Under ordinary conditions it converts to cyclooctasulfur. :8 S3 → 3 S8 Structure and bonding In terms of structure and bonding and ozone () are similar. Both adopt bent structures and are diamagnetic. Although represented with S=S double bonds, the bonding situation is more complex. The S–S distances are equivalent and are , and with an angle at the central atom of . However, cyclic , where the sulfur atoms are arranged in an equilateral triangle with three single bonds (similar to cyclic ozone and cyclopropane), is calculated to be lower in energy than the bent structure experimentally observed. The name thiozone was invented by Hugo Erdmann in 1908 who hypothesized that comprises a large proportion of liquid sulfur. However its existen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Efimov State
The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov in 1970. Efimov’s effect is where three identical bosons interact, with the prediction of an infinite series of excited three-body energy levels when a two-body state is exactly at the dissociation threshold. One corollary is that there exist bound states (called Efimov states) of three bosons even if the two-particle attraction is too weak to allow two bosons to form a pair. A (three-particle) Efimov state, where the (two-body) sub-systems are unbound, is often depicted symbolically by the Borromean rings. This means that if one of the particles is removed, the remaining two fall apart. In this case, the Efimov state is also called a Borromean state. Theory Efimov predicted that, as the pair interactions among three identical bosons approach resonance—that is, as the binding energy of some two-body bound state approaches zero or the scatt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van Der Waals Force
In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules. Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media. If no other force is present, the distance between atoms at which the force becomes repulsive rather than attractive as the atoms approach one another is called the van der Waals contact distance; this phenome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helium Trimer
The helium trimer (or trihelium) is a weakly bound molecule consisting of three helium atoms. Van der Waals forces link the atoms together. The combination of three atoms is much more stable than the two-atom helium dimer. The three-atom combination of helium-4 atoms is an Efimov state. Helium-3 is predicted to form a trimer, although ground state dimers containing helium-3 are completely unstable. Helium trimer molecules have been produced by expanding cold helium gas from a nozzle into a vacuum chamber. Such a set up also produces the helium dimer and other helium atom clusters. The existence of the molecule was proven by matter wave diffraction through a diffraction grating. Properties of the molecules can be discovered by Coulomb explosion imaging. In this process, a laser ionizes all three atoms simultaneously, which then fly away from each other due to electrostatic repulsion and are detected. The helium trimer is large, being more than 100 Å, which is even larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trihydrogen Cation
The trihydrogen cation or protonated molecular hydrogen is a cation (positive ion) with formula , consisting of three hydrogen nuclei (protons) sharing two electrons. The trihydrogen cation is one of the most abundant ions in the universe. It is stable in the interstellar medium (ISM) due to the low temperature and low density of interstellar space. The role that plays in the gas-phase chemistry of the ISM is unparalleled by any other molecular ion. The trihydrogen cation is the simplest triatomic molecule, because its two electrons are the only valence electrons in the system. It is also the simplest example of a three-center two-electron bond system. History was first discovered by J. J. Thomson in 1911. While studying the resultant species of plasma discharges, he discovered something very odd. Using an early form of mass spectrometry, he discovered a large abundance of a molecular ion with a mass-to-charge ratio of 3. He stated that the only two possibilities were C4+ or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ozone
Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lower atmosphere to ( dioxygen). Ozone is formed from dioxygen by the action of ultraviolet (UV) light and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the latter, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation. Ozone's odour is reminiscent of chlorine, and detectable by many people at concentrations of as little as in air. Ozone's O3 structure was determined in 1865. The molecule was later proven to have a bent structure and to be weakly diamagnetic. In standard conditions, ozone is a pale blue gas that condenses at cryogenic temperatures to a dark blue liquid and finally a violet-b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]