Theta Function Of A Lattice
   HOME
*





Theta Function Of A Lattice
In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm. Definition One can associate to any (positive-definite) lattice Λ a theta function given by :\Theta_\Lambda(\tau) = \sum_e^\qquad\mathrm\,\tau > 0. The theta function of a lattice is then a holomorphic function on the upper half-plane. Furthermore, the theta function of an even unimodular lattice of rank ''n'' is actually a modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ... of weight ''n''/2. The theta function of an integral lattice is often written as a power series in q = e^ so that the coefficient of ''q''''n'' gives the number of lattice vectors of norm 2''n''. References * Theta functions {{numtheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices are of inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the  axis is oriented vertically, the "upper half-plane" corresponds to the region above the  axis and thus complex numbers for which  > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by   0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = (diame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unimodular Lattice
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in ''n''-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The ''E''8 lattice and the Leech lattice are two famous examples. Definitions * A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). * The lattice is integral if (·,·) takes integer values. * The dimension of a lattice is the same as its rank (as a Z-module). * The norm of a lattice element ''a'' is (''a'', ''a''). * A lattice is positive definite if the norm of all nonzero elements is positive. * The determinant of a lattice is the determinant of the Gram matrix, a matrix with entries (''ai'', ''aj''), where the elements ''ai'' form a basis for the lattice. * An integral lattice is unimodular if its determinant is 1 or −1. * A unimodular lattice is ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory. A modular function is a function that is invariant with respect to the modular group, but without the condition that be Holomorphic function, holomorphic in the upper half-plane (among other requirements). Instead, modular functions are Meromorphic function, meromorphic (that is, they are holomorphic on the complement of a set of isolated points, which are poles of the function). Modular form theory is a special case of the more general theory of automorphic form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]