Tetraquark
   HOME
*



picture info

Tetraquark
A tetraquark, in particle physics, is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed. History and discoveries Several tetraquark candidates have been reported by particle physics experiments in the 21st century. The quark contents of these states are almost all qQ, where q represents a light ( up, down or strange) quark, Q represents a heavy (charm or bottom) quark, and antiquarks are denoted with an overline. The existence and stability of tetraquark states with the qq (or QQ) have been discussed by theoretical physicists for a long time, however these are yet to be reported by experiments. ;Timeline In 2003, a particle temporarily called X(3872), by the Belle experiment in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exotic Hadron
Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral. Consistent with ordinary hadrons, exotic hadrons are classified as being either fermions, like ordinary baryons, or bosons, like ordinary mesons. According to this classification scheme, pentaquarks, containing five valence quarks, are exotic baryons, while tetraquarks (four valence quarks) and hexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be considered exotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exotic Meson
Exotic mesons are mesons that have quantum numbers not possible in the quark model; some proposals for non-standard quark model mesons could be: ; glueballs or gluonium: Glueballs have no valence quarks at all. ; tetraquarks: Tetraquarks have two valence quark–antiquark pairs. ;hybrid mesons: Hybrid mesons contain a valence quark–antiquark pair and one or more gluons. All exotic mesons are classed as mesons because they are hadrons and carry zero baryon number. Of these, glueballs must be flavor singlets – that is, must have zero isospin, strangeness, charm, bottomness, and topness. Like all particle states, exotic mesons are specified by the quantum numbers which label representations of the Poincaré symmetry, q.e., by the mass (enclosed in parentheses), and by , where is the angular momentum, is the intrinsic parity, and is the charge conjugation parity; One also often specifies the isospin of the meson. Typically, every quark model meson comes in SU(3) fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Y(4140)
The Y(4140) particle is an electrically neutral exotic hadron candidate that is about 4.4 times heavier than the proton. It was observed at Fermilab and announced on 17 March 2009. This particle is extremely rare and was detected in only 20 of billions of collisions. Since it decays into J/ψ and φ mesons, it has been suggested that this particle is composed of charm quarks and charm antiquarks, possibly even a four quark combination. The existence of the particle has been confirmed by members of the CMS collaboration at the Large Hadron Collider on November 14, 2012 and by the DØ experiment at the Tevatron on September 25, 2013. The Belle experiment has searched for this particle but found no evidence for its existence. The LHCb experiment observes a peak at the same position in the J/ψϕ invariant mass, but it is best described as a Ds±Ds∗∓ cusp, and is much broader than the previous measurements of the Y(4140). The Particle Data Group has renamed Y(4140) to follow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as '' color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resonance (particle Physics)
In particle physics, a resonance is the peak located around a certain energy found in differential cross sections of scattering experiments. These peaks are associated with subatomic particles, which include a variety of bosons, quarks and hadrons (such as nucleons, delta baryons or upsilon mesons) and their excitations. In common usage, "resonance" only describes particles with very short lifetimes, mostly high-energy hadrons existing for or less. The width of the resonance (''Γ'') is related to the mean lifetime (''τ'') of the particle (or its excited state) by the relation :\Gamma=\frac where ''h'' is the Planck constant and =\frac. Thus, the lifetime of a particle is the direct inverse of the particle's resonance width. For example, the charged pion has the second-longest lifetime of any meson, at . Therefore, its resonance width is very small, about or about 6.11 MHz. Pions are generally not considered as "resonances". The charged rho meson has a very short lifetime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bottomonium
In particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. Light quarks Light quarks ( up, down, and strange) are much less massive than the heavier quarks, and so the physical states actually seen in experiments ( η, η′, and π0 mesons) are quantum mechanical mixtures of the light quark states. The much larger mass differences between the charm and bottom quarks and the lighter quarks results in states that are well defined in terms of a quark–antiquark pair of a given flavor. Heavy quarks Examples of quarkonia are the J/ψ meson (the ground state of charmonium, ) and the meson (bottomonium, ). Because of the high mass of the top quark, toponium ( θ meson) does not exist, since the top quark decays through the electroweak interaction before a bound state can form (a rare example of a weak process proceedin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics World
''Physics World'' is the membership magazine of the Institute of Physics, one of the largest physical societies in the world. It is an international monthly magazine covering all areas of physics, pure and applied, and is aimed at physicists in research, industry, physics outreach, and education worldwide. Overview The magazine was launched in 1988 by IOP Publishing Ltd, under the founding editorship of Philip Campbell. The magazine is sent free to members of the Institute of Physics, who can access a digital edition of the magazine; selected articles can be read by anyone for free online. It was redesigned in September 2005 and has an audited circulation of just under 35000. The current editor is Matin Durrani. Others on the team are Michael Banks (news editor) and Tushna Commissariat and Sarah Teah (features editors). Hamish Johnston, Margaret Harris and Tami Freeman are online editors. Alongside the print and online magazine, Physics World produces films and two podcasts. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Upsilon Meson
The Upsilon meson () is a quarkonium state (i.e. flavourless meson) formed from a bottom quark and its antiparticle. It was discovered by the E288 experiment team, headed by Leon Lederman, at Fermilab in 1977, and was the first particle containing a bottom quark to be discovered because it is the lightest that can be produced without additional massive particles. It has a lifetime of and a mass about in the ground state. See also * Oops-Leon, an erroneously-claimed discovery of a similar particle at a lower mass in 1976. * The particle is the analogous state made from strange quarks. * The particle is the analogous state made from charm quarks. * List of mesons :''This list is of all known and predicted scalar, pseudoscalar and vector mesons. See list of particles for a more detailed list of particles found in particle physics.'' This article contains a list of mesons, unstable subatomic particles ... References * * * Mesons Onia Subatomic particles wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review D
Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally consists of a series of questions about the pati ..., a regular overall check-up with a doctor * ''Physical'' (Olivia Newton-John album), 1981 ** "Physical" (Olivia Newton-John song) * ''Physical'' (Gabe Gurnsey album) * "Physical" (Alcazar song) (2004) * "Physical" (Enrique Iglesias song) (2014) * "Physical" (Dua Lipa song) (2020) *"Physical (You're So)", a 1980 song by Adam & the Ants, the B side to " Dog Eat Dog" * ''Physical'' (TV series), an American television series See also

{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

DESY
The Deutsches Elektronen-Synchrotron (English ''German Electron Synchrotron''), commonly referred to by the abbreviation DESY, is a national research center in Germany. It operates particle accelerators used to investigate the structure of matter, and conducts a broad spectrum of inter-disciplinary scientific research in three main areas: particle and high energy physics; photon science, and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany, the States of Germany, and the German Research Foundation (DFG). DESY is a member of the Helmholtz Association and operates at sites in Hamburg and Zeuthen. Functions DESY's function is to conduct fundamental research. It specializes in particle accelerator development, construction and operation, particle physics research to explore the fundamental characteristics of matter and forces, incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universe Today
Universe Today (U.T.) is a popular North American-based non-commercial space and astronomy news website. The domain was registered on December 30, 1998, and the website went live in March 1999, founded by Canadian Fraser Cain. The ''Universe Today'' assumed its current form on July 24, 2003, featuring astronomy news and space-related issues. By early September 2005, the forum section merged with '' Bad Astronomy'' as a combined site with the BAUT forum. During April 2011, the Association of British Science Writers noted that ''Universe Today'' decided not to make preparations for reporting on embargoed stories until they are public knowledge. Emily Lakdawalla said that she relies on ''Universe Today'' and '' Bad Astronomy'' to "give ... an independent look at big news stories". Publications ''Universe Today'' has published two books, which are available both as e-book An ebook (short for electronic book), also known as an e-book or eBook, is a book publication made ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]