TREE(3)
   HOME
*





TREE(3)
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved within ATR0 (a form of arithmetical transfinite recursion), and a finitary application of the theorem gives the existence of the fast-growing TREE function. In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function. Statement The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree with a root, and given vertices , , call a successor of if the unique path from the ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Friedman's SSCG Function
In mathematics, a simple subcubic graph (SSCG) is a finite simple Graph (discrete mathematics), graph in which each vertex (graph theory), vertex has vertex degree, degree at most three. Suppose we have a sequence of simple subcubic graphs ''G''1, ''G''2, ... such that each graph ''G''''i'' has at most ''i'' + ''k'' vertices (for some integer ''k'') and for no ''i'' < ''j'' is ''G''''i'' Homeomorphism (graph theory), homeomorphically embeddable into (i.e. is a graph minor of) ''G''''j''. The Robertson–Seymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. So, for each value of ''k'', there is a sequence with maximal length. The function SSCG(''k'') denotes that length for simple subcubic graphs. The function SCG(''k'') denotes that length for (general) subcubic graphs. The ''SCG'' sequence begins SCG(0) = 6, but then explodes to a value equivalent to fε ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kruskal's Tree Theorem
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved within ATR0 (a form of arithmetical transfinite recursion), and a finitary application of the theorem gives the existence of the fast-growing TREE function. In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function. Statement The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree with a root, and given vertices , , call a successor of if the unique path from the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graham's Number
Graham's number is an immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, both of which are in turn much larger than a googolplex. As with these, it is so large that the observable universe is far too small to contain an ordinary digital representation of Graham's number, assuming that each digit occupies one Planck volume, possibly the smallest measurable space. But even the number of digits in this digital representation of Graham's number would itself be a number so large that its digital representation cannot be represented in the observable universe. Nor even can the number of digits of ''that'' number—and so forth, for a number of times far exceeding the total number of Planck volumes in the observable universe. Thus Graham's number cannot be expressed even by physical universe-scale power towers of the form a ^. How ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Small Veblen Ordinal
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by is somewhat smaller than the small Veblen ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal \Gamma_0. Most systems of notation use symbols such as \psi(\alpha), \theta(\alpha), \psi_\alpha(\beta), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are "collapsing functions". The small Veblen ordinal \theta_(0) or \psi(\Omega^) is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connected by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual difference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kanamori–McAloon Theorem
In mathematical logic, the Kanamori–McAloon theorem, due to , gives an example of an incompleteness in Peano arithmetic, similar to that of the Paris–Harrington theorem. They showed that a certain finitistic theorem in Ramsey theory is not provable in Peano arithmetic (PA). Statement Given a set s\subseteq\mathbb of non-negative integers, let min(s) denote the minimum element of s. Let n denote the set of all ''n''-element subsets of X. A function f: n\rightarrow\mathbb where X\subseteq\mathbb is said to be ''regressive'' if f(s) for all s not containing 0. The Kanamori–McAloon theorem states that the following proposition, denoted by (*) in the original reference, is not provable in PA: :For every n,k\in\mathbb, there exists an m\in\mathbb such that for all regressive f: n\rightarrow\mathbb, there exists a set H\in
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast-growing Hierarchy
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy) is an ordinal-indexed family of rapidly increasing functions ''f''α: N → N (where N is the set of natural numbers , and α ranges up to some large countable ordinal). A primary example is the Wainer hierarchy, or Löb–Wainer hierarchy, which is an extension to all α < ε0. Such hierarchies provide a natural way to classify s according to rate-of-growth and .


...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  





Ackermann's Function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument Ackermann–Péter function is defined as follows for nonnegative integers ''m'' and ''n'': : \begin \operatorname(0, n) & = & n + 1 \\ \operatorname(m+1, 0) & = & \operatorname(m, 1) \\ \operatorname(m+1, n+1) & = & \operatorname(m, \operatorname(m+1, n)) \end Its value grows rapidly, even for small inputs. For example, is an integer of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ohio State University
The Ohio State University, commonly called Ohio State or OSU, is a public land-grant research university in Columbus, Ohio. A member of the University System of Ohio, it has been ranked by major institutional rankings among the best public universities in the United States. Founded in 1870 as the state's land-grant university and the ninth university in Ohio with the Morrill Act of 1862, Ohio State was originally known as the Ohio Agricultural and Mechanical College and focused on various agricultural and mechanical disciplines, but it developed into a comprehensive university under the direction of then-Governor and later U.S. president Rutherford B. Hayes, and in 1878, the Ohio General Assembly passed a law changing the name to "the Ohio State University" and broadening the scope of the university. Admission standards tightened and became greatly more selective throughout the 2000s and 2010s. Ohio State's political science department and faculty have greatly contri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ackermann Function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument Ackermann–Péter function is defined as follows for nonnegative integers ''m'' and ''n'': : \begin \operatorname(0, n) & = & n + 1 \\ \operatorname(m+1, 0) & = & \operatorname(m, 1) \\ \operatorname(m+1, n+1) & = & \operatorname(m, \operatorname(m+1, n)) \end Its value grows rapidly, even for small inputs. For example, is an integer o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]